China best Auto Spare Differential Gear Txz752 for Hino 1740 gear ratio calculator

Product Description

Product Description

Gear model Customized gear accoding to customers sample or drawing
product name Customized Bevel Gear for Reducer/ Oil Drilling Rig/ Construction Machinery/ Truck
material stainless steel , iron , aluminum ,bronze ,carbon steel ,brass , nylon etc .
size ISO standard  ,customer requirements
BORE Finished bore, Pilot Bore, Special request
surface treatment Carburizing and Quenching,Tempering ,Tooth suface high quenching Hardening,Tempering
Processing Method Molding, Shaving, Hobbing, Drilling, Tapping, Reaming, Manual Chamfering, Grinding etc
Heat Treatment Quenching & Tempering, Carburizing & Quenching, High-frequency Hardening, Carbonitriding……
Package Wooden Case/Container and pallet, or made-to-order
Certificate ISO9001  TS16949
Machining Process Gear Hobbing, Gear Milling, Gear Shaping, Gear Broaching, Gear Shaving, Gear Grinding and Gear Lapping ,gear accuracy testing

Detailed Photos

Certifications

Packaging & Shipping

Company Profile

ZheJiang Province Tonging Auto Synchronizer Co., Ltd and ZheJiang
Shshi Xihu (West Lake) Dis.g Gears Co. Ltd are focus on the production of space parts for the CHINAMFG over 35years. a professional company in the field. 

Our spare parts are interchangeable with the major manufacturers of heavy duty trucks, buses, light commercial and 4×4 pick up vehicles, medium and heavy duty Japanese applications. New items developing for customized in earthmover and agriculture machines.

There are 1 forging production line of 1600 tons, several forging
production lines from 400 tons to 1000 tons: more than 300 various
manufacturing and inspecting equipments with high efficiency and
precision; 2 heat treatment production lines. 
 

FAQ

 

Q1. What is your terms of packing?
A: Generally, we pack our goods in Crates/Pallet/Boxes/Cartons.
 
Q2. How about your delivery time?
A: Generally, it is 3-7days if the goods are in stock,or it is need 20-30days to producing,
 
it is according to the quantity.
 
Q3. Can you produce according to the samples?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.
 
Q4. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery
 
Q5.Do you provide samples?is it free or extra?
A:yes,we could offer the sample for free,but do not pay the cost of freight.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 1 Year
Type: Steering Bearing
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

differential gear

How does a differential gear system contribute to tire longevity?

A differential gear system plays a crucial role in tire longevity by ensuring optimal traction, minimizing tire wear, and distributing torque effectively. Here’s a detailed explanation of how a differential gear system contributes to tire longevity:

  • 1. Traction Optimization: The differential gear system allows the wheels on the same axle to rotate at different speeds when the vehicle is turning. This capability helps improve traction and reduces tire scrubbing, which occurs when the tires resist turning and skid instead. By optimizing traction during turns, the differential gear system helps prevent excessive tire wear caused by scrubbing.
  • 2. Torque Distribution: The differential gear system distributes torque from the engine to the wheels, allowing each wheel to receive an appropriate amount of power based on traction conditions. This distribution helps prevent wheel spin and excessive tire wear. By ensuring that torque is evenly distributed, the differential gear system helps maintain balanced tire wear across all wheels.
  • 3. Wheel Speed Synchronization: When driving in a straight line, the differential gear system synchronizes the rotational speeds of the wheels. This synchronization minimizes tire scrubbing and reduces uneven wear. By keeping the wheels rotating at similar speeds, the differential gear system promotes even tire wear, extending tire longevity.
  • 4. Cornering Stability: During cornering, the differential gear system allows the outer wheel to rotate faster than the inner wheel. This speed difference is necessary to accommodate the varying distances each wheel travels around the curve. By enabling smooth and controlled cornering, the differential gear system helps prevent excessive tire wear caused by lateral forces.
  • 5. Reduced Stress on Tires: A properly functioning differential gear system helps reduce stress on tires by allowing them to rotate freely and independently. By mitigating excessive forces and minimizing tire scrubbing, the differential gear system helps decrease wear and tear on the tires. This reduction in stress contributes to prolonged tire life.
  • 6. Traction Control: Some modern vehicles are equipped with advanced differential systems, such as electronic limited-slip differentials or torque vectoring differentials. These systems actively manage torque distribution to individual wheels based on traction conditions. By optimizing traction control, these differential systems help minimize tire slippage, improve grip, and reduce tire wear.
  • 7. Proper Maintenance: Regular maintenance of the differential gear system is essential for tire longevity. This includes periodic inspection of the differential components, ensuring proper lubrication, and addressing any issues promptly. Well-maintained differentials help ensure optimal performance, reducing the risk of tire wear and extending tire life.

Overall, a well-functioning and properly maintained differential gear system plays a vital role in tire longevity. It optimizes traction, distributes torque effectively, synchronizes wheel speeds, promotes cornering stability, and reduces stress on tires. By understanding and maintaining the differential gear system, drivers can help maximize tire life and minimize the need for premature tire replacements.

differential gear

How do differential gears function in both front-wheel-drive and rear-wheel-drive vehicles?

In both front-wheel-drive and rear-wheel-drive vehicles, differential gears serve the same fundamental purpose of distributing power from the engine to the wheels while allowing them to rotate at different speeds. However, their specific configurations and functions differ between these two types of drivetrains. Here’s a detailed explanation of how differential gears function in both front-wheel-drive and rear-wheel-drive vehicles:

Front-Wheel-Drive Vehicles:

In front-wheel-drive vehicles, the differential gears are typically integrated into the transaxle assembly, which combines the transmission and differential into a single unit. Here’s how the differential gears function in front-wheel-drive vehicles:

  • Power Input: The engine’s power is transmitted through the transmission to the transaxle assembly.
  • Ring and Pinion Gears: The power from the transaxle is delivered to a set of ring and pinion gears within the differential assembly. These gears are responsible for distributing torque to the front wheels.
  • Spider Gears: The ring gear is connected to a carrier that houses multiple smaller gears called spider gears. These spider gears allow the front wheels to rotate at different speeds during turns.
  • Equal Torque Distribution: In front-wheel-drive vehicles, the differential gears prioritize equal torque distribution between the two front wheels. This design helps maintain traction and stability during acceleration and cornering.
  • Traction Control: Some front-wheel-drive vehicles may also incorporate additional features in the differential assembly, such as electronic limited-slip differentials or traction control systems. These features help optimize traction by transferring power to the wheel with better grip, reducing wheel spin and improving overall performance.

Rear-Wheel-Drive Vehicles:

In rear-wheel-drive vehicles, the differential gears are typically located in the rear axle assembly. Here’s how the differential gears function in rear-wheel-drive vehicles:

  • Power Input: The engine’s power is transmitted through the transmission to the driveshaft, which connects to the rear axle assembly.
  • Drive Pinion and Ring Gear: The driveshaft is connected to a drive pinion gear, which meshes with a larger ring gear. This gear set is responsible for transferring power to the rear wheels.
  • Spider Gears: Similar to front-wheel-drive vehicles, rear-wheel-drive vehicles also have spider gears housed within the differential assembly. The spider gears allow the rear wheels to rotate at different speeds during turns.
  • Torque Distribution: In rear-wheel-drive vehicles, the differential gears distribute torque to the rear wheels in a manner that prioritizes rear-wheel traction and propulsion. This configuration is particularly beneficial for vehicle acceleration and load-carrying capability.
  • Enhanced Features: Rear-wheel-drive vehicles may also incorporate advanced differential systems, such as limited-slip differentials or electronic locking differentials, to optimize traction and performance. These features help improve grip, especially in challenging driving conditions or when driving off-road.

In summary, differential gears function differently in front-wheel-drive and rear-wheel-drive vehicles due to their distinct drivetrain configurations. In front-wheel-drive vehicles, the differential gears are typically integrated into the transaxle assembly and prioritize equal torque distribution to the front wheels. In rear-wheel-drive vehicles, the differential gears are located in the rear axle assembly and focus on torque distribution to the rear wheels for propulsion. Understanding the specific functions of differential gears in each drivetrain type is essential for optimizing vehicle performance, traction, and stability.

differential gear

What is a locking differential, and when is it used?

A locking differential is a specialized type of differential gear that provides maximum traction in challenging driving conditions. Here’s a detailed explanation:

Definition:

A locking differential, also known as a locker, is a mechanism that locks the rotation of the two wheels on an axle together, ensuring they both receive equal torque simultaneously. Unlike open differentials or limited-slip differentials, which allow the wheels to rotate at different speeds, a locking differential forces both wheels to turn together, regardless of traction conditions.

Function:

The primary function of a locking differential is to maximize traction. By mechanically linking the two wheels on an axle, a locking differential ensures that both wheels receive an equal amount of torque, regardless of the traction available to each wheel. This feature is particularly useful in off-road or extreme driving conditions where maintaining traction on all wheels is crucial.

Usage:

A locking differential is typically used in situations where improved traction is essential. Here are some scenarios where a locking differential is commonly employed:

1. Off-Road Driving:

Off-road enthusiasts often encounter challenging terrains with uneven surfaces, deep mud, rocks, or slippery conditions. In these situations, a locking differential can provide maximum traction by ensuring that both wheels on an axle rotate together. This helps prevent wheel spin and increases the likelihood of successfully navigating through difficult obstacles.

2. Rock Crawling:

Rock crawling involves traversing over large rocks and boulders, where maintaining traction is crucial. A locking differential allows both wheels to maintain contact with the ground simultaneously, providing better grip and stability. This enables the vehicle to crawl over rocks with minimal wheel spin and improved control.

3. Towing and Hauling:

When towing or hauling heavy loads, a locking differential can enhance traction and stability. The additional torque applied to both wheels helps prevent wheel slip and provides better power transfer to the ground. This is particularly useful in situations where the load may affect weight distribution and traction on the drive wheels.

4. Extreme Weather Conditions:

In certain weather conditions such as deep snow, ice, or mud, a locking differential can offer improved traction. By ensuring that both wheels on an axle rotate together, a locking differential helps mitigate wheel slip and enhances the vehicle’s ability to maintain forward momentum even in low-traction environments.

5. Off-Road Racing:

In off-road racing, where high-performance vehicles face demanding terrains and aggressive maneuvers, locking differentials are often utilized. The maximum traction provided by a locking differential allows for better acceleration, cornering, and overall performance in challenging racing conditions.

It’s important to note that while a locking differential offers superior traction, it can also negatively impact handling and maneuverability on paved surfaces. Due to the locked wheel rotation, turning becomes more difficult, and tire scrubbing may occur. Therefore, locking differentials are predominantly used in specialized applications or off-road vehicles designed for demanding environments.

In summary, a locking differential is a mechanism that locks the rotation of both wheels on an axle together, maximizing traction in challenging driving conditions. It is commonly used in off-road driving, rock crawling, towing and hauling, extreme weather conditions, and off-road racing, where maintaining traction is crucial for performance and stability.

China best Auto Spare Differential Gear Txz752 for Hino 1740 gear ratio calculatorChina best Auto Spare Differential Gear Txz752 for Hino 1740 gear ratio calculator
editor by Dream 2024-05-02