China Professional Casting and Forging Grith Gear Ring of Ball Mill/Rotary Kiln with high quality

Product Description

Pinion gear for Rotary Kiln/ball Mill and Cement Plant


 

CITICHL Pinion Gear invested in significant resources and achieved many innovations with pinions. The right combination of material, hardness and finishing between pinion and gear is crucial for a long lifetime of the installed equipment. We design and manufacture pinions to match every customers need, no matter how unique the situation might be.
 

 

Casting & forging ability
CITICHL is the casting & forging center in central-south China, possessing 50t electric arc furnace, 60t LF ladle refining furnace, and 60t VD/VOD refining furnace, etc. We can pour 350t liquid steel 1 time and yields more than 200,000t of  high quality liquid steel and can produce the high quality steel of more than 260 steel grades such as carbon steel, structural alloy steel and the structural steel, refractory steel and stainless steel of special requirement. The maximum weight of casting, gray casting, graphite cast iron and non-ferrous casting is 200t, 30t, 20t and 205t separately. 
 
The company is the forging center in central-south China. It is very powerful in forging. The single free forging is 100t(max weight). We can roll rings of different sections of carbon steel, alloy steel, high temperature alloy and non-ferrous alloys such as copper alloy, aluminum alloy and titanium alloy. The maximum diameter is 5.5m and single piece of the forging weighs 10t. We have 8400t, 3150t, 1600t, water press and RAW 200/160-5000/750 large-size ring mill of high precision in Asia made in WAGNER, Germany.
 

Our pinion gears Features

Pinion design: bored CHINAMFG on shaft / integral self aligned spur, helical or double helical

forged alloyed steel

Spur, helical or double helical

Three different designs:Fabricated steel – forged ring – rolled plate

Standards/Certificates :• CHINAMFG EN ISO • AWS • ASTM • ASME • DIN

Pinion gear cutting machines
Φ16m CNC hobbing Machine
Φ12m Gear cutting machine (Switzerland)
Φ10m hobbing machine (Germany)
Φ4m CNC high speed hobbing machine (Germany)
Φ1.6m Horizontal CNC hobbing machine (Germany)
Φ5m CNC profile gear grinding machine (Germany)
Φ2.8m CNC Profile gear grinding machine (Germany)
Φ1.25m CNC Profile gear grinding machine (Germany)
Φ1m CNC Profile gear grinding machine (Germany)
 

 

Specifications of Gear :

No. Item Description  
1 Diameter ≤15m  
2 Module ≤45  
3 Material Cast Alloy Steel, Cast Carbon Steel, Forged Alloy Steel, Forged Carbon Steel  
4 Structure From Integrated, Half to Half, Four Pieces and More Pieces  
 
5 Heat Treatment Quenching & Tempering, Normalizing & Tempering, Carburizing & Quenching & Tempering  
 
6 Tooth Form Annular Gear, Outer Gear Ring  
7 Standard ISO, EN, DIN, AISI, ASTM, JIS, IS, GB  

Inspection and Test Outline of Girth Gear:

No. Item Inspection Area Acceptance Criteria Inspection Stage Certificates
1 Chemical 
Composition
Sample Material Requirement When Smelting
After Heat Treatment
Chemical Composition 
Report
2 Mechanical
 Properties
Sample(Test Bar on the Gear Body) Technical Requirement After Heat Treatment Mechanical Properties 
Report
3 Heat 
Treatment
Whole Body Manufacturing Standard During Heat Treatment Heat Treatment Report
Curves of Heat 
Treatment
4 Hardness 
Test
Tooth Surface, 3 Points Per 90° Technical Requirement After Heat Treatment Hardness Teat Report
After Semi Finish 
Machining
5 Dimension 
Inspection
Whole Body Drawing After Semi Finish
 
 Machining
Dimension Inspection 
Report
Finish Machining
6 Magnetic Power Test (MT) Tooth Surface Agreed Standard After Finish Gear 
Hobbing
MT  Report
7 UT Spokes Parts Agreed Standard After Rough Machining UT Report
After Welded
After Semi Finish 
Machining
8 PT Defect Area No Defect Indicated After Digging
After Welded
PT Record
9 Mark Inspection Whole Body Manufacturing Standard Final Inspection Pictures
10 Appearance 
Inspection
Whole Body CIC’s Requirement Before Packing
(Final Inspection)
 
11 Anti-rust 
Inspection
Whole Body Agreed Anti-rust Agent Before Packing Pictures 
12 Packing 
Inspection
Whole Body Agreed Packing Form During Packing Pictures

Facilities For Manufacturing Gear ring:

No. Item Description
1 Smelting & Casting Capability  
40t ,50t, 80t Series AC Electric Arc Furnace
2×150t, 60t LF Ladle Refining Furnace
150t, 60t Series VD/VOD Furnace
20×18m Large Pouring Facility
We can pour 900t refining liquid steel one time, and achieve vacuum poured 600t steel ingots.
We can produce the high quality steel of more than 260 steel grades as carbon steel,structural alloy steel and the structural steel, refractory steel and stainless steel of special requirement. The maximum weight of casting steel, gray casting, graphite cast iron and non-ferrous casting is 600t, 200t, 150t and 20t separately.
2 Forging Capability  
The only one in the word, the most technologically advanced and the largest specification18500t Oil Press, equipped with 750t.m forging operation machine
8400t Water Press
3150t Water Press
1600t Water Press
Φ5m High Precision Ring Mill ( WAGNER,Germany)
Φ12m High Precision Ring Mill
We can roll rings of different sections of carbon steel, alloy steel, high temperature alloy steel and non-ferrous alloys such as copper alloy, aluminum alloy and titanium alloy. Max. Diameter of rolled ring will be 12m.
3 Heat Treatment Capability 9×9×15m,8×8×12m,6×6×15m,15×16×6.5m,16×20×6m ,7×7×17m Series Heat Furnace and Heat Treatment Furnaces
φ2.0×30m,φ3.0×5.0m Series Heat Treatment Furnaces
φ5.0×2.5m,φ3.2×1.5m,φ3.0×5.0m,φ2.0×5m Series Carburizing Furnaces & Nitriding Furnaces & Quenching Bathes
φ2.0×30m Well Type CNC Electrical Furnaces
Φ3.0×5.0M Horizontal Gas Temperature-differential Furnace
Double-frequency and Double-position Quenching Lathe of Pinion Shaft
4 Machining Capability 1. ≥5m CNC Heavy Duty Vertical Lathes
12m CNC Double-column Vertical Lathe
10m CNC Double-column Vertical Lathe
10m CNC Single-column Vertical Lathe
6.3m Heavy Duty Vertical Lathe
5m CNC Heavy Duty Vertical Lathe  
2. ≥5m Vertical Gear Hobbing Machines
15m CNC Vertical Gear Hobbing Machine
10m Gear Hobbing Machine
8m Gear Hobbing Machine
5m Gear Hobbing Machine
3m Gear Hobbing Machining
3. Imported High-precision Gear Grinding Machines
0.8m~3.5m CNC Molding Gear Grinding Machines
4. Large Boring & Milling Machines
220 CNC Floor-mounted Boring & Milling Machine
200 CNC Floor-mounted Boring & Milling Machine
160 CNC Floor-mounted Boring & Milling Machine

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machinery, Marine
Hardness: as Requirement
Gear Position: External Gear
Manufacturing Method: Cut Gear
Toothed Portion Shape: Bevel Wheel
Material: Stainless Steel
Customization:
Available

|

Customized Request

ring gear

How do you choose the right size ring gear for your application?

Choosing the right size ring gear for a specific application involves considering several factors related to the gear system, load requirements, space constraints, and performance objectives. Here’s a detailed explanation of the process involved in selecting the appropriate size ring gear:

  1. Determine the Gear System Parameters: Understand the specific requirements of the gear system in which the ring gear will be used. This includes identifying the input power, desired output speed, torque requirements, and operating conditions such as temperature, vibration, and lubrication.
  2. Calculate Gear Ratios: Determine the required gear ratios for the gear system. Gear ratios define the relationship between the rotational speeds and torques of the driving and driven gears. By knowing the desired gear ratios, you can calculate the appropriate size of the ring gear relative to the other gears in the system.
  3. Evaluate Load Capacity: Assess the load capacity needed for the application. Consider the maximum torque and radial loads that the ring gear will experience during operation. It’s crucial to select a ring gear that can handle the anticipated loads without excessive wear, deformation, or failure.
  4. Consider Space Limitations: Determine the available space for the ring gear within the application. Consider the overall dimensions, such as the outer diameter, inner diameter, and thickness of the ring gear. Ensure that the selected size fits within the designated space without interfering with other components or compromising the overall functionality of the system.
  5. Account for Manufacturing Considerations: Consider the manufacturability of the ring gear. Evaluate factors such as the feasibility of producing the required tooth profile, the availability of suitable materials, and the manufacturing capabilities of the supplier. It’s important to choose a size that can be efficiently manufactured while meeting the required quality standards.
  6. Consult Design Guidelines and Standards: Refer to industry design guidelines, standards, and specifications specific to the type of gear and application. These guidelines provide recommendations and formulas for calculating gear sizes based on factors such as tooth strength, contact stress, and bending stress. Adhering to recognized standards ensures that the selected ring gear size is appropriate for the intended application.

It is often beneficial to consult with gear design engineers or industry experts to ensure the proper selection of the ring gear size. They can provide detailed analysis, simulation, and expertise in choosing the optimal size based on the specific requirements and constraints of the application.

By carefully considering these factors and following established design practices, you can choose the right size ring gear that will deliver reliable performance, efficient power transmission, and long-term durability for your application.

\ring gear

What are the advantages and disadvantages of using ring gears?

Using ring gears in various applications offers several advantages and disadvantages. Here’s a detailed explanation of the advantages and disadvantages of using ring gears:

Advantages of Using Ring Gears:

  • Efficient Power Transmission: Ring gears provide efficient power transmission by transmitting rotational energy and torque between components. They enable smooth and reliable transfer of power, resulting in efficient operation of the system.
  • High Torque Capacity: Ring gears are designed to handle high torque loads. Their robust construction and large contact area between gear teeth allow for the transmission of substantial amounts of torque, making them suitable for applications that require high torque capacity.
  • Compact Design: Ring gears have a compact design compared to other gear types, such as spur gears or helical gears. This compactness allows for space-saving installations, making ring gears suitable for applications with limited space or tight packaging requirements.
  • Load Distribution: Ring gears distribute loads evenly across the gear system, preventing localized overloading and reducing the risk of premature component failure. They help ensure balanced operation and optimal load sharing among gears, resulting in improved system reliability.
  • Versatility: Ring gears are versatile and can be used in a wide range of applications across various industries. They are found in automotive transmissions, industrial gearboxes, wind turbines, robotics, printing presses, and many other machinery and equipment types.
  • Smooth and Quiet Operation: Well-designed ring gears with proper tooth profiles and tight tolerances can provide smooth and quiet operation. They minimize noise and vibrations, enhancing the overall user experience and reducing the need for additional noise reduction measures.

Disadvantages of Using Ring Gears:

  • Complex Manufacturing: The manufacturing process for ring gears can be more complex compared to simpler gear types. The intricate geometry and tooth profiles of ring gears require precise machining and specialized manufacturing techniques, which may increase production costs.
  • Higher Friction and Wear: Ring gears can generate higher levels of friction compared to other gear types. The sliding motion of the gear teeth during engagement can result in increased wear and heat generation. Proper lubrication and maintenance are necessary to minimize friction and ensure long-term durability.
  • Backlash: Ring gears may exhibit a certain amount of backlash, which is the play or clearance between gear teeth when they change direction. Backlash can impact the accuracy and precision of the gear system, especially in applications that require high positioning or synchronization requirements. Minimizing backlash requires careful design and precise manufacturing.
  • Complex Gear Meshing: Ring gears require proper gear meshing with other gears to ensure efficient power transmission. Achieving optimal gear meshing can be more challenging due to the curved profile of the ring gear. It requires careful design considerations and precise alignment to ensure smooth and reliable operation.
  • Cost: Ring gears can be more expensive than simpler gear types due to their complex manufacturing process and specialized design requirements. The higher cost may be a consideration in applications with strict budget constraints or where alternative gear types can fulfill the required functionality.

It’s important to consider the specific requirements and constraints of the application when deciding whether to use ring gears. While they offer advantages such as efficient power transmission, high torque capacity, and compact design, they also have disadvantages related to manufacturing complexity, friction, backlash, and cost. Proper engineering analysis and evaluation can help determine the suitability of ring gears for a given application.

ring gear

What industries commonly use ring gears?

Ring gears, also known as annular gears or internal gears, are utilized in various industries due to their unique characteristics and capabilities. Here’s a detailed explanation of the industries that commonly use ring gears:

  • Automotive Industry: Ring gears are extensively used in the automotive industry. They are a crucial component in automotive transmissions, differential systems, and steering mechanisms. Ring gears help transmit torque and rotational motion, enabling smooth shifting of gears and efficient power transfer in vehicles.
  • Aerospace Industry: The aerospace industry relies on ring gears for various applications. They are used in aircraft engines, landing gear systems, actuation mechanisms, and aerospace gearboxes. Ring gears provide reliable and precise motion control in critical aerospace systems.
  • Industrial Machinery: Ring gears find wide applications in industrial machinery, including heavy machinery, manufacturing equipment, and power generation systems. They are used in gearboxes, speed reducers, and other power transmission systems. Ring gears enable efficient torque transfer and motion control in industrial settings.
  • Robotics: Ring gears play a significant role in robotics and automation. They are employed in robotic joints, manipulator arms, and motion control systems. Ring gears provide precise and smooth rotation, allowing robots to perform intricate tasks with accuracy and repeatability.
  • Power Generation: Ring gears are utilized in power generation equipment such as wind turbines, hydroelectric generators, and steam turbines. They are part of the gearbox systems that convert the rotational motion of the turbine blades into electrical energy. Ring gears enable efficient power transmission and adaptability to varying load conditions.
  • Heavy Equipment and Construction: The heavy equipment and construction industry extensively use ring gears in equipment like excavators, cranes, loaders, and bulldozers. They are vital for the operation of the drivetrain and hydraulic systems, enabling controlled movement and power transfer in demanding construction environments.
  • Marine Industry: Ring gears are employed in various marine applications, including ship propulsion systems, marine winches, and steering mechanisms. They provide reliable torque transfer and motion control in marine vessels, ensuring efficient navigation and maneuverability.
  • Renewable Energy: Ring gears are utilized in renewable energy systems such as solar tracking systems and tidal power generation. They enable the precise tracking of solar panels and the efficient conversion of tidal forces into electrical energy.

The diverse applications of ring gears across these industries highlight their versatility and importance in various mechanical systems. The specific design, size, and material selection of ring gears may vary depending on the industry requirements and operating conditions.

China Professional Casting and Forging Grith Gear Ring of Ball Mill/Rotary Kiln with high qualityChina Professional Casting and Forging Grith Gear Ring of Ball Mill/Rotary Kiln with high quality
editor by CX 2024-04-09