China Professional Custom Precision Casting Metal Steel Bevel Gear with CNC Turning worm gear motor

Product Description

Custom Precision Casting Metal Steel Bevel Gear with cnc turning

According to drawing mainly produce bevel gear, spur gear, worm gear, ring gear, trasmission gear based on steel, stainless steel precision casting with machining.

If you need OEM gears by casting, forging or machining, please feel free to contact us.

ISO9001, 2000 Certificate
OEM is acceptable.
Good quality and low price
Contace us without hesitation

* Material: Stainless Steel brass iron aluminum
* Sand and investment casting(precision casting)are all avalable
* Software for drawing: PRO/E, Auto CAD, UG, CAD, PAF and Solidwork 2008 flow analysis
* Further machining work: Turning and cutting, milling, grinding, drilling, reaming and threading
* Surface finish process: Shot blast, chromate plating, power coated and anodizing
* OEM/ODM parts range: Auto parts, electronic parts, furniture parts, home appliance and other industrial uses
* Process: CAD surface, matel processing, surface plating, QC testing and packaging
* Made according to customers’ drawing, sepecification or/ and samples
* Castng capacity: 200 tons to 500tons/per month

PROCESS MATERIAL STHangZhouRD
SAND
CASTING
Green Sand Grey Iron, Ductile Iron, Malleable Iron, Stanless Steel, Carbon, Steel, Aluminium, Brass, Bronze ASTM
BS
JIS
DIN
etc
Furan Resin Sand
Cold Harden Resin Sand
INVESTMENT
CASTING
Sodium Silicone (Water galss) Stainless Steel, Carbon Steel, Special Alloy Steel Bronze, Brass, Aluminum
Silica Sol
FORGING Hammer Forging Stainless Steel, Carbon Steel, Alloy Streel, Brass, Aluminum
Die Forging
Roll Forging
STAMPING MACHINING STAMPING MACHINING All metal material

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Stainless Steel
Name: Custom Precision Casting Metal Steel Bevel Gear
Mold: 20
Teeth Number: 58
Tolerance: as Drawings
Post-Processs: Hest Teatment
Customization:
Available

|

Customized Request

bevel gear

Are bevel gears suitable for high-torque applications?

Bevel gears can indeed be suitable for high-torque applications, depending on various factors such as the specific design, material selection, and proper application engineering. Here’s a detailed explanation:

Bevel gears are known for their ability to transmit power between intersecting shafts at different angles. They can handle significant torque loads and are commonly used in applications that require high-torque transmission. However, the suitability of bevel gears for high-torque applications depends on the following factors:

  • Design: The design of the bevel gears plays a crucial role in their ability to handle high torque. Factors such as tooth profile, size, and geometry impact the load-carrying capacity and torque transmission capability. Bevel gears with robust and optimized designs, including suitable tooth profiles and adequate tooth engagement, can effectively handle high-torque applications.
  • Material Selection: The choice of materials for bevel gears is critical in high-torque applications. Gears need to be made from materials with high strength, hardness, and wear resistance to withstand the forces and stresses involved in transmitting high torque. Common materials used for bevel gears include alloy steels, carburizing steels, and specialty alloys. Material selection should consider the specific torque requirements, operating conditions, and anticipated loads to ensure the gears can handle the desired torque levels.
  • Lubrication: Proper lubrication is essential for reducing friction, wear, and heat generation in high-torque bevel gear applications. Adequate lubrication helps maintain a lubricating film between the gear teeth, minimizing metal-to-metal contact and associated losses. The lubricant type, viscosity, and replenishment schedule should be selected based on the torque and operating conditions to ensure effective lubrication and minimize gear wear.
  • Gear Size and Ratio: The size of the bevel gears and the gear ratio can influence their torque-handling capability. Larger gears generally have greater tooth strength and load-carrying capacity, making them more suitable for high-torque applications. The gear ratio should also be considered to ensure it is appropriate for the desired torque transmission and to avoid excessive loads on the gears.
  • Operating Conditions: The operating conditions, including speed, temperature, and shock loads, must be taken into account when determining the suitability of bevel gears for high-torque applications. Higher speeds and extreme operating temperatures can affect the gear material properties, lubrication performance, and overall gear system efficiency. Proper cooling, temperature control, and gear protection measures should be implemented to maintain reliable performance under high-torque conditions.

By considering these factors and properly engineering the bevel gear system, it is possible to utilize bevel gears in high-torque applications effectively. However, it is crucial to consult with experienced engineers and perform thorough analysis and testing to ensure the gears can handle the specific torque requirements of the application.

bevel gear

How do you calculate the efficiency of a bevel gear?

To calculate the efficiency of a bevel gear, you need to compare the power input to the gear with the power output and account for any losses in the gear system. Here’s a detailed explanation of the calculation process:

The efficiency of a bevel gear can be calculated using the following formula:

Efficiency = (Power output / Power input) x 100%

Here’s a step-by-step breakdown of the calculation:

  1. Calculate the Power Input: Determine the power input to the bevel gear system. This can be obtained by multiplying the input torque (Tin) by the input angular velocity (ωin), using the formula:
  2. Power input = Tin x ωin

  3. Calculate the Power Output: Determine the power output from the bevel gear system. This can be obtained by multiplying the output torque (Tout) by the output angular velocity (ωout), using the formula:
  4. Power output = Tout x ωout

  5. Calculate the Efficiency: Divide the power output by the power input and multiply by 100% to obtain the efficiency:
  6. Efficiency = (Power output / Power input) x 100%

The efficiency of a bevel gear represents the percentage of input power that is effectively transmitted to the output, considering losses due to factors such as friction, gear meshing, and lubrication. It is important to note that the efficiency of a bevel gear system can vary depending on various factors, including gear quality, alignment, lubrication condition, and operating conditions.

When calculating the efficiency, it is crucial to use consistent units for torque and angular velocity. Additionally, it’s important to ensure that the power input and output are measured at the same point in the gear system, typically at the input and output shafts.

Keep in mind that the calculated efficiency is an approximation and may not account for all the losses in the gear system. Factors such as bearing losses, windage losses, and other system-specific losses are not included in this basic efficiency calculation. Actual efficiency can vary based on the specific design and operating conditions of the bevel gear system.

By calculating the efficiency, engineers can evaluate the performance of a bevel gear and make informed decisions regarding gear selection, optimization, and system design.

bevel gear

Can you explain the concept of straight and spiral bevel gears?

Straight and spiral bevel gears are two common types of bevel gears that have different tooth geometries and characteristics. Here’s a detailed explanation of the concept of straight and spiral bevel gears:

Straight Bevel Gears:

Straight bevel gears are a type of bevel gears with straight-cut teeth that are machined on the cone-shaped surface of the gears. The teeth of straight bevel gears are parallel to the gear axis and intersect at a 90-degree angle. These gears are often used when the intersecting shafts need to transmit rotational motion at a right angle.

Straight bevel gears have the following characteristics:

  • Tooth Engagement: In straight bevel gears, the tooth engagement occurs gradually as the gears rotate. This results in a relatively smooth and continuous transfer of power between the gears.
  • Noise and Vibration: Straight bevel gears can produce more noise and vibration compared to other types of bevel gears, particularly at higher speeds. The straight-cut teeth create impact and noise during the engagement process.
  • Efficiency: Straight bevel gears have relatively high efficiency due to their simple tooth geometry and direct engagement.
  • Applications: Straight bevel gears are commonly used in applications such as automotive differentials, hand drills, and other mechanical power transmission systems where a 90-degree change in direction is required.

Spiral Bevel Gears:

Spiral bevel gears are another type of bevel gears with curved teeth that are machined on the cone-shaped surface of the gears. The teeth of spiral bevel gears are cut in a spiral pattern, gradually curving along the gear surface. This spiral tooth geometry provides several advantages over straight bevel gears.

Spiral bevel gears have the following characteristics:

  • Tooth Engagement: Spiral bevel gears have a more gradual and smoother tooth engagement compared to straight bevel gears. The spiral-shaped teeth allow for progressive contact between the gears, resulting in reduced impact, noise, and vibration.
  • Noise and Vibration: Spiral bevel gears produce less noise and vibration compared to straight bevel gears due to their improved tooth engagement characteristics.
  • Load Capacity: Spiral bevel gears have higher load-carrying capacity compared to straight bevel gears due to the increased contact area between the gear teeth. This makes them suitable for applications that require higher torque transmission.
  • Efficiency: Spiral bevel gears have slightly lower efficiency compared to straight bevel gears due to the sliding action between the teeth during engagement. However, advancements in gear design and manufacturing techniques have improved their efficiency.
  • Applications: Spiral bevel gears are commonly used in applications where smooth and quiet operation is required, such as automotive rear axle drives, machine tools, and industrial machinery.

In summary, straight bevel gears have straight-cut teeth that intersect at a 90-degree angle, while spiral bevel gears have curved teeth that engage in a spiral pattern. Straight bevel gears are suitable for applications that require a right angle change in direction, while spiral bevel gears provide smoother engagement, reduced noise, and higher load-carrying capacity. The selection between straight and spiral bevel gears depends on the specific requirements of the application, including the desired level of noise, vibration, efficiency, and torque transmission.

China Professional Custom Precision Casting Metal Steel Bevel Gear with CNC Turning worm gear motorChina Professional Custom Precision Casting Metal Steel Bevel Gear with CNC Turning worm gear motor
editor by CX 2024-04-04