China manufacturer CZPT469 Inter-Axle Differential Spare Parts Driven/Driving Cylindrical Gear HD469-2502021 spurs gear

Product Description

Factory Support Customized High Precision Manufacturer Supplier CHINAMFG CHINAMFG 469 Inter-axle Differential Spare Parts Driven/Driving Cylindrical Gear HD

 

(1) Accessory products of the truck, use 20CrMmti material.
(2) Heat treatment and tempering, high gear root strength, stronger impact resistance.
(3) Multi-purpose CHINAMFG carburizing processing, fine grinding processing technology, effectively reducing noise.
(4) Test product 1 by one, and inspect each product on delivery to ensure 100% quality stability of the product.
(5) The unified brand carton, inner bag and integral foam packaging, which is strong and beautiful.
(6) Passed ISO/TS16949:2009 quality management system certification.
(7) Passed ISO/IEC17571:2005 certification.
(8) Certified by National Laboratory Accreditation Committee.
(9) “100 Auto Parts Suppliers” in China.
(10) China Machinery Top 500.
(11) National first-class measurement enterprise.
(12) National first-class physical and chemical enterprise.

Helpful Links

For instant communication, please click here
For our catalogs, please click here
For our home page, please click here

 

Factory Show

More Products

Truck Model Sinotruk, Shacman, Saic Xihu (West Lake) Dis.n, Foton Auman, CHINAMFG Xihu (West Lake) Dis., Xihu (West Lake) Dis.feng, European & Japanese Truck Series, North BENZ( BEIBEN), JAC, etc.
Product catalogue Axle Wheel Assembly
Differential Assembly
Main Reducer Assembly
Inner Ring Gear& Bracket
Basin Angle Gear/ Bevel Gear
Axle Shaft/ Half Shaft & Through Shaft
Axle Housing& Axle Assembly
Steering knuckle & Front Axle
Gear
Brake Drum& Wheel Hub
Flange
Bearing
Main Reducer Housing
Oil Seal Seat
Nut& Shim Series
Brake Backing Plate
Chassis Support Products Leaf Spring Bracket
Drop Arm Series
Bracket Series
Leaf Spring Shackle Series
Balanced Suspension Series Balance Shaft Assembly
Balance Shaft Housing
Axle Spring Seat
Thrust Rod
Balance Shaft Parts
Shock Absorber Series Shock Absorber
Shock Absorbing Airbag
Steering System Power Steering Pump
Power Steering Gear
Rubber Products Oil Seal
Rubber Support
Thrust Rod Rubber Core
Truck Belt
Engine support
Other
Clutch Series Clutch Pressure Plate
Clutch Disc
Flywheel Assembly
Flywheel Ring Gear
Adjusting Arm Series  

 

Working Principle

Single reduction gear is a driving bevel gear (commonly known as angular gear) and a basin angle gear pair. The driving bevel gear is connected with the transmission shaft, rotates clockwise, sticks to its right side from the bevel gear, and rotates downward at the meshing point, which is consistent with the CHINAMFG direction of the wheel. Due to the small diameter of the driving bevel gear and the large diameter of the bevel gear, the function of deceleration is achieved.
The double reduction has an additional intermediate transition gear.The left side of the driving bevel gear is meshed with the bevel gear of the intermediate gear. The bevel gear is coaxial with a spur gear with small diameter, and the spur gear is meshed with the driven gear. In this way, the intermediate gear rotates backward and the driven gear rotates forward. There is a two-stage deceleration process in the middle.
Due to the increase of axle volume, double reduction was mainly used in vehicles with low engine power in the past, mainly in construction machinery with low speed and high torque.
In the double reduction final drive, if the second-stage deceleration is carried out near the wheel, it actually constitutes an independent part at the 2 wheels, it is called wheel reducer. The advantage of this is that the torque transmitted by the half shaft can be reduced, which is conducive to reducing the size and quality of the half shaft. The wheel reducer can be planetary gear type or composed of a pair of cylindrical gear pairs. When the cylindrical gear pair is used for wheel side deceleration, the up-down position relationship between the wheel axis and the half shaft can be changed by adjusting the mutual position of the 2 gears. This kind of axle is called portal axle, which is often used for vehicles with special requirements for the high and low position of the axle.
According to the number of the main reducer transmission ratio, it can be divided into single-speed and double-speed. 
Domestic cars basically adopt single speed main reducer with fixed transmission ratio. On the double reduction final drive, there are 2 transmission ratios for selection, and this main reducer actually acts as an auxiliary transmission.

Packaging & Shipping

Certifications

FAQ

Q1. How to guarantee your after-sales service?
Strict inspection during production, Strictly check the products before shipment to ensure our packaging in good condition. Track and receive feedback from customer regularly. Our products warranty is 365 days.
Each product provides quality assurance service. If there is a problem with the product within the warranty period, the customer can negotiate with us in detail about the related claims, and we will do our best to satisfy the customer.

Q2. How can I accurately buy the products I need?
We need accurate product number, If you can’t provide product number, you can send us your product picture, or tell us your truck model, engine name plate, and so on. we will
determine exactly what you need products.

Q3. Do you accept third party inspection?
Yes.we do

Q4. How about your delivery time?
Generally, it will take 3 to 10 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.

Q5. What are your brand agency conditions and advantages?
After we CHINAMFG an agent in 1 city, we will not CHINAMFG a second company to protect the agent’s brand advantage and price advantage. And we will help the agent develop customers and solve all kinds of difficult and miscellaneous problems about products.

Q6. What is your terms of payment?
By TT or LC. We’ll show you the photos of the products and packages before you pay the balance.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Support
Condition: New
Application: Shacman Hande 469
Samples:
US$ 45/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

differential gear

How do differential gears handle varying speeds in a vehicle’s wheels?

A differential gear system is designed to handle varying speeds in a vehicle’s wheels, allowing them to rotate at different rates while maintaining torque distribution. Here’s a detailed explanation of how differential gears achieve this:

1. Differential Assembly:

The differential assembly consists of several gears, including the ring and pinion gears, side gears, and spider gears. These components work together to accommodate varying speeds between the wheels.

2. Power Input:

The power is delivered to the differential gears through the driveshaft or transmission. The ring gear receives this power from the driveshaft, while the pinion gear is connected to the ring gear and transfers the rotational force to the differential assembly.

3. Speed Differences:

When a vehicle is moving in a straight line, the wheels ideally rotate at the same speed. However, during turns or when encountering different traction conditions, the wheels need to rotate at varying speeds. This is because the wheel on the outside of a turn covers a greater distance than the inside wheel, resulting in a speed differential.

4. Spider Gears:

The differential gears utilize spider gears, which are small gears located between the side gears. Spider gears allow the side gears to rotate independently of each other, accommodating the speed differences between the wheels.

5. Torque Distribution:

As the spider gears allow the side gears to rotate independently, torque is distributed between the wheels based on their speed differences. The wheel with less resistance or greater traction receives more torque, while the wheel with more resistance or lower traction receives less torque.

6. Smooth Cornering:

During turns, the inside wheel needs to rotate at a slower speed than the outside wheel. The differential gears allow this speed differentiation, enabling smooth cornering without wheel hop or tire scrubbing. By distributing torque appropriately, the differential gears ensure that both wheels receive sufficient power for optimal traction and control.

7. Limited-Slip and Locking Differentials:

In certain differential systems, such as limited-slip differentials or locking differentials, additional mechanisms are employed to further regulate speed differences and torque distribution. Limited-slip differentials use clutch packs or friction plates to provide a predetermined amount of resistance, allowing some differentiation between the wheels while still transferring power. Locking differentials lock the side gears together, ensuring equal torque distribution to both wheels, regardless of traction conditions.

8. Differential Types:

There are different types of differentials, including open differentials, limited-slip differentials, electronic differentials, torque vectoring differentials, and more. Each type utilizes specific technologies and mechanisms to handle varying speeds and torque distribution based on the vehicle’s requirements and driving conditions.

In summary, differential gears handle varying speeds in a vehicle’s wheels by utilizing a system of gears, including spider gears, side gears, ring and pinion gears. The speed differences between the wheels are accommodated by allowing independent rotation of the side gears through the spider gears. Torque distribution is adjusted to ensure optimal traction and control during turns and varying traction conditions. Additional mechanisms, such as limited-slip or locking differentials, can further regulate speed differences and torque distribution for enhanced performance and stability.

differential gear

What are the considerations for choosing the right type of differential gear for a vehicle?

When selecting the appropriate type of differential gear for a vehicle, several considerations come into play. Choosing the right differential gear involves assessing factors such as vehicle characteristics, intended use, driving conditions, and desired performance. Here’s a detailed explanation of the considerations for choosing the right type of differential gear:

  • Vehicle Type: The type of vehicle, whether it’s a passenger car, SUV, truck, or performance vehicle, plays a significant role in determining the appropriate differential gear. Different types of vehicles have varying weight distributions, power outputs, and handling characteristics, which influence the optimal choice of differential gear.
  • Driving Conditions: The intended driving conditions are crucial in selecting the right differential gear. Factors such as road surface, weather conditions, and terrain should be considered. For example, vehicles driven primarily on paved roads may benefit from different differential gear options compared to off-road vehicles that frequently encounter challenging terrain or vehicles that operate in regions with snowy or icy conditions.
  • Performance Requirements: The desired performance attributes of the vehicle are important considerations. Some drivers prioritize acceleration and high-speed performance, while others focus on off-road capabilities, towing capacity, or fuel efficiency. Differential gears can be chosen to optimize specific performance aspects, such as maximizing traction, improving handling, enhancing torque delivery, or achieving better fuel economy.
  • Traction Needs: The level of traction required is a key factor in selecting the right differential gear. Vehicles that need maximum traction in challenging conditions, such as racing cars, off-road vehicles, or vehicles used in low-grip environments, may benefit from limited-slip differentials or locking differentials. These differential types help distribute power to the wheels with the most grip, enhancing traction and maintaining vehicle control.
  • Driving Dynamics: The desired driving dynamics and handling characteristics also influence the choice of differential gear. Some drivers prefer a more predictable and balanced handling, while others may desire more aggressive cornering capabilities. Differential gears with specific characteristics, such as torque vectoring differentials, can enhance these driving dynamics by actively managing torque distribution between individual wheels.
  • Budget: Cost considerations are also significant when choosing a differential gear. Different types of differential gears vary in terms of complexity, features, and pricing. It’s essential to evaluate the budget constraints and weigh the cost against the desired performance benefits and requirements.

In summary, selecting the right type of differential gear for a vehicle involves considering factors such as vehicle type, driving conditions, performance requirements, traction needs, driving dynamics, and budget. By carefully assessing these considerations, drivers can choose a differential gear that aligns with their vehicle’s characteristics, intended use, and performance objectives, ultimately enhancing traction, handling, and overall driving experience.

differential gear

What is a locking differential, and when is it used?

A locking differential is a specialized type of differential gear that provides maximum traction in challenging driving conditions. Here’s a detailed explanation:

Definition:

A locking differential, also known as a locker, is a mechanism that locks the rotation of the two wheels on an axle together, ensuring they both receive equal torque simultaneously. Unlike open differentials or limited-slip differentials, which allow the wheels to rotate at different speeds, a locking differential forces both wheels to turn together, regardless of traction conditions.

Function:

The primary function of a locking differential is to maximize traction. By mechanically linking the two wheels on an axle, a locking differential ensures that both wheels receive an equal amount of torque, regardless of the traction available to each wheel. This feature is particularly useful in off-road or extreme driving conditions where maintaining traction on all wheels is crucial.

Usage:

A locking differential is typically used in situations where improved traction is essential. Here are some scenarios where a locking differential is commonly employed:

1. Off-Road Driving:

Off-road enthusiasts often encounter challenging terrains with uneven surfaces, deep mud, rocks, or slippery conditions. In these situations, a locking differential can provide maximum traction by ensuring that both wheels on an axle rotate together. This helps prevent wheel spin and increases the likelihood of successfully navigating through difficult obstacles.

2. Rock Crawling:

Rock crawling involves traversing over large rocks and boulders, where maintaining traction is crucial. A locking differential allows both wheels to maintain contact with the ground simultaneously, providing better grip and stability. This enables the vehicle to crawl over rocks with minimal wheel spin and improved control.

3. Towing and Hauling:

When towing or hauling heavy loads, a locking differential can enhance traction and stability. The additional torque applied to both wheels helps prevent wheel slip and provides better power transfer to the ground. This is particularly useful in situations where the load may affect weight distribution and traction on the drive wheels.

4. Extreme Weather Conditions:

In certain weather conditions such as deep snow, ice, or mud, a locking differential can offer improved traction. By ensuring that both wheels on an axle rotate together, a locking differential helps mitigate wheel slip and enhances the vehicle’s ability to maintain forward momentum even in low-traction environments.

5. Off-Road Racing:

In off-road racing, where high-performance vehicles face demanding terrains and aggressive maneuvers, locking differentials are often utilized. The maximum traction provided by a locking differential allows for better acceleration, cornering, and overall performance in challenging racing conditions.

It’s important to note that while a locking differential offers superior traction, it can also negatively impact handling and maneuverability on paved surfaces. Due to the locked wheel rotation, turning becomes more difficult, and tire scrubbing may occur. Therefore, locking differentials are predominantly used in specialized applications or off-road vehicles designed for demanding environments.

In summary, a locking differential is a mechanism that locks the rotation of both wheels on an axle together, maximizing traction in challenging driving conditions. It is commonly used in off-road driving, rock crawling, towing and hauling, extreme weather conditions, and off-road racing, where maintaining traction is crucial for performance and stability.

China manufacturer CZPT469 Inter-Axle Differential Spare Parts Driven/Driving Cylindrical Gear HD469-2502021 spurs gearChina manufacturer CZPT469 Inter-Axle Differential Spare Parts Driven/Driving Cylindrical Gear HD469-2502021 spurs gear
editor by Dream 2024-05-08