China Standard Ball Mill Spur Gear Ring Gear with Good quality

Product Description

CITICIC is the casting & forging center in central-south China, possessing 50t electric arc furnace, 60t LF ladle refining furnace, and 60t VD/VOD refining furnace, etc. We can pour 350t liquid steel 1 time and yields more than 200,000t of high quality liquid steel and can produce the high quality steel of more than 260 steel grades such as carbon steel, structural alloy steel and the structural steel, refractory steel and stainless steel of special requirement. The maximum weight of casting, gray casting, graphite cast iron and non-ferrous casting is 200t, 30t, 20t and 205t separately.

 

Features:

Module Range: 10 Module to 70 Module.

Diameter: Min 800mm to16000 mm.

Weight: Max 120 MT single piece.

Three different designs: Fabricated steel – forged ring – rolled plate

Standards / Certificates: • CHINAMFG EN ISO • AWS • ASTM • ASME • DIN

 

Advantages:

– Products with Customers’ Designs

– Strong Machining & Heat Treatment Abilities

– Strict Quality Control

– Prompt Delivery

– Experience in Cooperation with Fortune 500 Companies

 

Process:

Forging / Casting

Normalizing & Tempering-Proof Machining

Quenching & Tempering

Finish Machining (Teeth Grinding)

 

We can offer you in various process conditions solutions for Many End Markets and Applications

–Mining

–Metallurgy

–Power Generation

–Sugar

–Cement Plant

–Port Machinery

–Oil and natural

–Papermaking

–OEM gear case

–General Industrial

 

Specifications Of Gear:

No.

Item

Description

1

Diameter

≤15m

2

Module

≤45

3

Material

Cast Alloy Steel, Cast Carbon Steel, Forged Alloy Steel, Forged Carbon Steel

4

Structure From

Integrated, Half to Half, Four Pieces and More Pieces

     

5

Heat Treatment

Quenching & Tempering, Normalizing & Tempering, Carburizing & Quenching & Tempering

     

6

Tooth Form

Annular Gear, Outer Gear Ring

7

Standard

ISO, EN, DIN, AISI, ASTM, JIS, IS, GB

 

Inspection And Test Outline Of Girth Gear:

No.

Item

Inspection Area

Acceptance Criteria

Inspection Stage

Certificates

1

Chemical 
Composition

Sample

Material Requirement

When Smelting
After Heat Treatment

Chemical Composition 
Report

2

Mechanical
Properties

Sample (Test Bar on the Gear Body)

Technical Requirement

After Heat Treatment

Mechanical Properties 
Report

3

Heat 
Treatment

Whole Body

Manufacturing Standard

During Heat Treatment

Heat Treatment Report
Curves of Heat 
Treatment

4

Hardness 
Test

Tooth Surface, 3 Points Per 90°

Technical Requirement

After Heat Treatment

Hardness Teat Report

After Semi Finish 
Machining

         

5

Dimension 
Inspection

Whole Body

Drawing

After Semi Finish

Machining

Dimension Inspection 
Report

Finish Machining

         

6

Magnetic Power Test (MT)

Tooth Surface

Agreed Standard

After Finish Gear 
Hobbing

MT Report

7

UT

Spokes Parts

Agreed Standard

After Rough Machining

UT Report

After Welded

         

After Semi Finish 
Machining

         

8

PT

Defect Area

No Defect Indicated

After Digging
After Welded

PT Record

9

Mark Inspection

Whole Body

Manufacturing Standard

Final Inspection

Pictures

10

Appearance Inspection

Whole Body

CIC’s Requirement

Before Packing (Final Inspection)

 

11

Anti-rust 
Inspection

Whole Body

Agreed Anti-rust Agent

Before Packing

Pictures

12

Packing 
Inspection

Whole Body

Agreed Packing Form

During Packing

Pictures

 

Facilities For Manufacturing Gear Ring:

No

Item

Description

1

Smelting & Casting Capability

40t, 50t, 80t Series AC Electric Arc Furnace
2×150t, 60t LF Ladle Refining Furnace
150t, 60t Series VD / VOD Furnace
20×18m Large Pouring Facility

We can pour 900t refining liquid steel 1 time, and achieve vacuum poured 600t steel ingots.

We can produce the high quality steel of more than 260 steel grades as carbon steel, structural alloy steel and the structural steel, refractory steel and stainless steel of special requirement. 

The maximum weight of casting steel, gray casting, graphite cast iron and non-ferrous casting is 600t, 200t, 150t and 20t separately.

2

Forging Capability

The only 1 in the word, the most technologically advanced and the largest 
specification18500t Oil Press, equipped with 750t.m forging operation machine
8400t Water Press
3150t Water Press
1600t Water Press
Φ5m High Precision Ring Mill (Germany)
Φ12m High Precision Ring Mil
We can roll rings of different sections of carbon steel, alloy steel, high temperature alloy steel and non-ferrous alloys such as copper alloy, aluminum alloy and titanium alloy. 
Max. Diameter of rolled ring will be 12m.

3

Heat Treatment Capability

9×9×15m, 8×8×12m, 6×6×15m, 15×16×6.5m, 16×20×6m, 7×7×17m Series Heat CHINAMFG and Heat Treatment Furnaces

φ2.0×30m, φ3.0×5.0m Series Heat Treatment Furnaces
φ5.0×2.5m, φ3.2×1.5m, φ3.0×5.0m, φ2.0×5m Series Carburizing Furnaces &
Nitriding Furnaces & Quenching Bathes
φ2.0×30m Well Type CNC Electrical Furnaces
Φ3.0×5.0M Horizontal Gas Temperature-differential Furnace
Double-frequency and Double-position Quenching Lathe of Pinion Shaft

4

Machining Capability

1. ≥5m CNC Heavy Duty Vertical Lathes

12m CNC Double-column Vertical Lathe
10m CNC Double-column Vertical Lathe
10m CNC Single-column Vertical Lathe
6.3m Heavy Duty Vertical Lathe
5m CNC Heavy Duty Vertical Lathe

 

2. ≥5m Vertical Gear Hobbing Machines
15m CNC Vertical Gear Hobbing Machine
10m Gear Hobbing Machine
8m Gear Hobbing Machine
5m Gear Hobbing Machine
3m Gear Hobbing Machining

 

3. Imported High-precision Gear Grinding Machines
0.8m~3.5m CNC Molding Gear Grinding Machines

 

4. Large Boring & Milling Machines
220 CNC Floor-mounted Boring & Milling Machine
200 CNC Floor-mounted Boring & Milling Machine
160 CNC Floor-mounted Boring & Milling Machine

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industry
Hardness: According to Customer′s Requirement
Gear Position: External Gear
Manufacturing Method: Cast Gear
Toothed Portion Shape: Spur Gear
Material: Steel
Customization:
Available

|

Customized Request

ring gear

How do you install a ring gear system?

Installing a ring gear system requires careful attention to ensure proper alignment, engagement, and secure attachment. Here’s a detailed explanation of the installation process:

  1. Prepare the Components: Gather all the necessary components for the ring gear system installation, including the ring gear, driving gear, and any other associated gears or components.
  2. Clean the Surfaces: Thoroughly clean the mounting surfaces of the gears and the mating components to remove any dirt, debris, or old lubricant. Clean surfaces will ensure better engagement and prevent contamination of the gear system.
  3. Inspect the Gears: Carefully inspect the ring gear and other gears for any signs of damage, wear, or misalignment. Check the teeth for any chips, cracks, or irregularities that may affect the performance of the gear system. Replace any damaged or worn gears before proceeding with the installation.
  4. Ensure Proper Alignment: Align the ring gear and the driving gear in the desired configuration. The alignment depends on the specific gear system and application requirements. Follow the manufacturer’s guidelines or engineering specifications to achieve the correct alignment.
  5. Establish Gear Engagement: Position the driving gear in close proximity to the ring gear and ensure proper engagement of the gear teeth. The teeth should mesh smoothly and evenly without any gaps or interference. Adjust the positioning of the gears if necessary to achieve optimal engagement.
  6. Secure Attachment: Once the gears are properly aligned and engaged, secure the ring gear in place. This may involve bolting or fastening the ring gear to a stationary component or housing. Follow the recommended torque specifications provided by the manufacturer to ensure proper tightening without overloading the gear system.
  7. Check Clearance and Backlash: Verify that there is adequate clearance between the gears and other nearby components to prevent interference during operation. Also, check the backlash, which is the slight gap between the meshing teeth, to ensure it falls within the recommended range. Adjust the gear positioning if clearance or backlash is outside the acceptable limits.
  8. Apply Lubrication: Apply the appropriate lubricant to the gear teeth and the mating surfaces to reduce friction and wear. Refer to the manufacturer’s recommendations for the type and amount of lubricant to use. Proper lubrication is crucial for smooth gear operation and longevity.
  9. Perform Function and Safety Tests: After the installation, perform function tests to ensure the gear system operates smoothly and without any abnormal noise or vibration. Additionally, check for any safety considerations, such as the presence of appropriate guards or protective covers if required for the specific application.

It’s important to note that the installation process may vary depending on the specific gear system, machinery, and manufacturer’s guidelines. Always refer to the provided instructions and consult with experts or professionals if needed to ensure a proper and accurate installation of the ring gear system.

ring gear

How does a ring gear impact the overall efficiency of a system?

A ring gear plays a significant role in the overall efficiency of a system. Here’s a detailed explanation of how a ring gear impacts system efficiency:

  • Power Transmission: Ring gears are responsible for transmitting power from one component to another within a system. They facilitate the transfer of rotational energy and torque between gears, shafts, or other drivetrain elements. The design and quality of the ring gear, along with its meshing with other gears, directly affect the efficiency of power transmission. Well-designed and properly maintained ring gears minimize energy losses due to friction, misalignment, or backlash, resulting in higher overall system efficiency.
  • Friction and Wear: The interaction between the ring gear and other gears or components introduces friction, which can lead to energy losses and reduced efficiency. The smoothness of the gear surfaces, the quality of the lubrication, and the design of the gear teeth profile all influence the amount of friction generated. High-quality ring gears with proper lubrication and optimized tooth profiles can minimize friction and wear, thereby improving system efficiency by reducing energy losses.
  • Mechanical Losses: In any gear system, there are inherent mechanical losses due to factors such as gear meshing, rolling resistance, and internal friction. These losses can impact the overall efficiency of the system. The design and quality of the ring gear, including factors such as gear tooth geometry, material selection, and surface finish, can help minimize mechanical losses. By reducing these losses, the ring gear contributes to improved system efficiency.
  • Load Distribution: Ring gears play a critical role in distributing loads within a system. They help evenly distribute the forces and torque applied to the gear system, preventing localized overloading and reducing the risk of premature component failure. Proper load distribution achieved through well-designed ring gears ensures balanced operation, minimizes stress concentrations, and optimizes the system’s overall efficiency.
  • Backlash and Precision: Backlash refers to the play or clearance between the gear teeth when they change direction. Excessive backlash can result in inefficient power transmission, reduced accuracy, and increased wear. Ring gears with tight tolerances and precise manufacturing help minimize backlash, ensuring smooth and efficient operation. By reducing backlash and maintaining precise gear meshing, the ring gear contributes to improved system efficiency and accuracy.
  • System Integration and Compatibility: Ring gears must be properly integrated into the overall system design and be compatible with other components. The alignment, mounting, and proper engagement of the ring gear with other gears or components are crucial for efficient operation. Misalignment or compatibility issues can lead to increased friction, wear, and energy losses. A well-integrated ring gear that is compatible with the system’s requirements contributes to improved overall efficiency.
  • Maintenance and Lubrication: Regular maintenance and proper lubrication of the ring gear are essential for maintaining efficiency. Adequate lubrication reduces friction, wear, and heat generation, promoting efficient power transmission. Regular inspections, lubricant analysis, and timely lubricant replenishment or replacement help ensure optimal performance and efficiency of the ring gear and the overall system.

Overall, the design, quality, maintenance, and proper integration of the ring gear within a system significantly impact its efficiency. Through minimizing friction, reducing mechanical losses, optimizing load distribution, and ensuring precise operation, a well-designed and properly maintained ring gear contributes to improved overall system efficiency.

ring gear

What are the applications of ring gears?

Ring gears, also known as annular gears or internal gears, have a wide range of applications across various industries and mechanical systems. Here’s a detailed explanation of the applications of ring gears:

Ring gears are commonly used in numerous applications where rotational motion, torque transmission, and load distribution are essential. The unique design and characteristics of ring gears make them suitable for a variety of mechanical systems. Here are some common applications of ring gears:

  • Automotive Transmissions: Ring gears are extensively used in automotive transmissions, particularly in automatic and manual transmissions. They are part of the gear train that transfers rotational motion and torque from the engine to the wheels. Ring gears in automotive applications are typically large in size and designed to handle high torque loads.
  • Differential Systems: Ring gears play a crucial role in differential systems found in vehicles. The differential assembly allows the wheels on an axle to rotate at different speeds while distributing torque evenly. Ring gears form an integral part of the differential assembly, enabling torque transfer and speed differentiation between the drive wheels.
  • Planetary Gear Systems: Ring gears are a fundamental component in planetary gear systems, which are widely used in various applications. Planetary gear systems consist of a central sun gear, planet gears, and a ring gear. The ring gear serves as the outer ring that meshes with the planet gears and the sun gear. Planetary gear systems offer high gear ratios, compactness, and versatility, making them suitable for applications such as automotive transmissions, industrial machinery, and aerospace systems.
  • Industrial Machinery: Ring gears find extensive use in industrial machinery for power transmission, motion control, and speed regulation. They are employed in equipment such as gearboxes, speed reducers, hoists, conveyors, and rotary tables. Ring gears enable efficient torque transmission, precise motion control, and load distribution in these industrial applications.
  • Robotics and Automation: Ring gears are utilized in robotics and automation systems for precise motion control and synchronization. They can be found in robotic arms, automated assembly lines, CNC machines, and other robotic applications where accurate positioning and precise motion are critical. Ring gears provide the necessary torque transmission and gear reduction required for precise robotic movements.
  • Power Generation: Ring gears are used in power generation equipment, such as wind turbines and hydroelectric generators. They form part of the gearboxes that convert the rotational motion of the turbine or generator rotor into electrical energy. Ring gears in power generation applications need to handle high torque loads, operate reliably, and provide efficient power transmission.
  • Heavy Machinery and Construction Equipment: Ring gears are employed in heavy machinery and construction equipment, including excavators, cranes, mining equipment, and agricultural machinery. They facilitate the transmission of power and torque for various functions, such as lifting, digging, and material handling. Ring gears in these applications are designed to withstand high loads, rugged environments, and demanding operating conditions.

These are just a few examples of the applications of ring gears. Their versatility, load-carrying capacity, compact design, and ability to achieve high gear ratios make them suitable for a wide range of mechanical systems across industries.

The specific design, size, and material selection of ring gears may vary depending on the application requirements, operating conditions, and performance specifications.

China Standard Ball Mill Spur Gear Ring Gear with Good qualityChina Standard Ball Mill Spur Gear Ring Gear with Good quality
editor by CX 2024-03-29