China OEM Custom Casting Steel Large Module Ring Gear Rotary Kiln CZPT Ball Mill Girth Gear worm gear winch

Product Description

Custom casting girth gear 42CrMo Rotary Kiln large ring gear high quality large diameter ring gear

Product Description

 

Process: 
Forging/Casting
Normalizing&Tempering-Proof Machinnig
Quenching&Tempering
Finish Machining(Teeth Grinding)

We can offer you in various process conditions Solutions for Many End Markets and Applications
–Mining
–Metallurgy
–Power Generation
–Cement Plant
–Port Machinery
–Oil and natural
–Paper making
–OEM gear case
–General Industrial

Specification Machining Scope
Size OD Max 16m
One Piece of Gear: OD Max 13m
Assemble Gear: According to drawings
Hobbing Modulus 10-60
Milling Modulus Up to 120
Spiral Modulus 1-15
Accuracy Grade Milling: 6 grade
Hobbing: 8 grade
Material Alloy steel: 42CrMo4, 34CrNiMo6 etc.
Carbon steel: C45E, 1030
Carburizing steel
Quenched and tempered steel
Heat treatment Quenching & Tempering, Surface Quenching
Teeth Profile Spur, Helical, Herringbone, Crown, Spiral, Worm and shaft

Inspection and Test Outline of Girth Gear:

No. Item Inspection Area Acceptance Criteria Inspection Stage Certificates
1 Chemical Composition Sample Material Requirement When Smelting
After Heat Treatment
Chemical Composition Report
2 Mechanical Properties Sample(Test Bar on the Gear Body) Technical Requirement After Heat Treatment Mechanical Properties Report
3 Heat Treatment Whole Body Manufacturing Standard During Heat Treatment Heat Treatment Report
Curves of Heat Treatment
4 Hardness Test Tooth Surface, 3 Points Per 90° Technical Requirement After Heat Treatment Hardness Teat Report
After Semi Finish Machining
5 Dimension Inspection Whole Body Drawing After Semi Finish Machining Dimension Inspection Report
Finish Machining
6 Magnetic Power Test (MT) Tooth Surface Agreed Standard After Finish Gear Hobbing MT  Report
7 UT Spokes Parts Agreed Standard After Rough Machining UT Report
After Welded
After Semi Finish Machining
8 PT Defect Area No Defect Indicated After Digging
After Welded
PT Record
9 Mark Inspection Whole Body Manufacturing Standard Final Inspection Pictures
10 Appearance Inspection Whole Body CIC’s Requirement Before Packing
(Final Inspection)
 
11 Anti-rust Inspection Whole Body Agreed Anti-rust Agent Before Packing Pictures 
12 Packing Inspection Whole Body Agreed Packing Form During Packing Pictures

 Testing Process:
· QA DOC: Chemical Composition Report, Mechanical Properties Report, UT Report, Heat Treatment Report, Dimensions Check Report
·  UT test: 100% ultrasonic test according to EN15718-3, SA388, Sep 1921 C/c etc.
· Heat Treatment Report: provide original copy of heat treatment curve/time table.

FAQ

 

1. What is your minimum order quantity?
   Our minimum order quantity typically ranges from 5 to 100 pieces, depending on the product and material.

2. Can you provide custom designs?
   Yes, we specialize in providing custom designs based on your specific requirements.

3. What is your production capacity?
   Our production capacity varies depending on the product and material, but we have the capability to produce millions of pieces per year.

4. What is your lead time for orders?
   Our lead time for orders is typically 4-6 weeks for production and delivery.

5. Do you offer quality control and testing?
   Yes, we have strict quality control measures in place and offer testing services, including non-destructive testing, to ensure the quality of our products.
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machinery, Industry
Hardness: According to Customers′ Requirements
Gear Position: Internal Gear

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ring gear

What is the purpose of using ring gears in machinery?

Ring gears serve multiple purposes and offer various advantages when used in machinery. Here’s a detailed explanation of the purpose of using ring gears:

  • Power Transmission: One of the primary purposes of ring gears in machinery is to facilitate power transmission. Ring gears, along with other meshing gears, transmit torque and rotational motion from the driving gear to the driven components or systems. They enable the transfer of power from a power source to various parts of the machinery, driving the movement and operation of different mechanisms and processes.
  • Gear Ratio Control: Ring gears allow for precise control over the gear ratio in machinery. By adjusting the size of the ring gear and its meshing gears, different gear ratios can be achieved. Gear ratios determine the relationship between the rotational speeds and torques of the driving and driven gears. This ability to control the gear ratio enables machinery to operate at desired speeds, optimize torque output, and adapt to specific application requirements.
  • Mechanical Advantage: Ring gears provide a mechanical advantage in machinery. By leveraging the gear ratio control mentioned above, ring gears can amplify or reduce the torque output of the power source. This mechanical advantage allows machinery to generate higher forces or torques than the original power source alone. It enables the machinery to handle heavy loads, perform tasks requiring significant force, and enhance overall operational efficiency.
  • Load Distribution: Ring gears contribute to load distribution within machinery. The meshing teeth of the ring gear engage with multiple teeth of other gears, distributing the transmitted loads across these meshing points. This load distribution helps prevent excessive stress concentration on specific gear teeth, ensuring even wear and reducing the risk of gear failure. By distributing the load, ring gears enhance the overall durability and reliability of the machinery.
  • Motion Control: Ring gears play a crucial role in motion control within machinery. By transmitting rotational motion, ring gears enable precise movement and synchronization of various components and mechanisms. They ensure that different parts of the machinery operate in a coordinated manner, allowing for smooth and controlled motion. Ring gears contribute to accurate positioning, speed regulation, and overall motion precision in machinery.
  • Compact Design: Ring gears offer a compact design solution. Due to their annular shape, they can be integrated into machinery with limited space. The compactness of ring gears is particularly beneficial in applications where space constraints are a concern. Their small footprint allows for efficient use of available space, enabling the design of more compact and lightweight machinery without sacrificing power transmission capabilities.
  • Versatile Applications: Ring gears find wide applications across various industries and machinery types. They are used in automotive transmissions, industrial machinery, robotics, aerospace systems, power generation equipment, and more. The versatility of ring gears stems from the ability to configure them in different types, such as external or internal ring gears, helical gears, or bevel gears. This versatility makes ring gears adaptable to a wide range of machinery designs and requirements.

By serving these purposes, ring gears contribute to the efficient and reliable operation of machinery. They enable power transmission, gear ratio control, mechanical advantage, load distribution, motion control, and compact design, making them essential components in various mechanical systems.

ring gear

Are ring gears suitable for high-torque applications?

Ring gears are indeed suitable for high-torque applications. Here’s a detailed explanation of why ring gears are suitable for high-torque applications:

Ring gears are designed to handle high torque loads and are commonly used in various applications that require substantial torque transmission. Here are the reasons why ring gears are well-suited for high-torque applications:

  • Robust Construction: Ring gears are typically constructed with robust materials, such as hardened steel or other high-strength alloys. This construction provides the necessary strength, durability, and resistance to withstand high torque forces without deformation or failure.
  • Large Contact Area: Ring gears have a large contact area between their gear teeth, which allows for efficient power transmission and load distribution. The larger contact area enables the ring gear to transmit higher torque without experiencing excessive stress concentrations or localized overloading.
  • Optimized Tooth Geometry: The tooth geometry of ring gears is designed to handle high torque. The shape and profile of the gear teeth are optimized to distribute the torque load evenly, minimizing stress concentrations and enhancing the gear’s ability to transmit higher torque without premature wear or failure.
  • Multiple Gear Engagements: Ring gears often engage with multiple gears or pinions, which further enhances their torque capacity. The engagement of multiple gears allows for load sharing, distributing the torque across multiple contact points and reducing the strain on individual gear teeth.
  • Customizable Gear Ratios: Ring gears can be designed with various gear ratios to meet specific torque requirements. By adjusting the tooth count or diameter of the ring gear and mating gears, the gear system can be optimized for high torque applications while maintaining the desired speed or rotational characteristics.
  • Used in Heavy-Duty Applications: Ring gears are widely used in heavy-duty applications that demand high torque transmission. Examples include automotive differentials, industrial gearboxes, mining equipment, construction machinery, and wind turbines. These applications rely on ring gears to effectively transmit and handle the high torque generated by powerful engines, motors, or turbines.

It’s important to note that while ring gears are suitable for high-torque applications, proper engineering analysis and selection should be carried out to ensure that the specific design, material, and size of the ring gear are appropriate for the intended torque requirements. Factors such as gear tooth strength, gear geometry, material properties, lubrication, and operating conditions should be carefully considered to ensure reliable and efficient performance in high-torque applications.

ring gear

What are the applications of ring gears?

Ring gears, also known as annular gears or internal gears, have a wide range of applications across various industries and mechanical systems. Here’s a detailed explanation of the applications of ring gears:

Ring gears are commonly used in numerous applications where rotational motion, torque transmission, and load distribution are essential. The unique design and characteristics of ring gears make them suitable for a variety of mechanical systems. Here are some common applications of ring gears:

  • Automotive Transmissions: Ring gears are extensively used in automotive transmissions, particularly in automatic and manual transmissions. They are part of the gear train that transfers rotational motion and torque from the engine to the wheels. Ring gears in automotive applications are typically large in size and designed to handle high torque loads.
  • Differential Systems: Ring gears play a crucial role in differential systems found in vehicles. The differential assembly allows the wheels on an axle to rotate at different speeds while distributing torque evenly. Ring gears form an integral part of the differential assembly, enabling torque transfer and speed differentiation between the drive wheels.
  • Planetary Gear Systems: Ring gears are a fundamental component in planetary gear systems, which are widely used in various applications. Planetary gear systems consist of a central sun gear, planet gears, and a ring gear. The ring gear serves as the outer ring that meshes with the planet gears and the sun gear. Planetary gear systems offer high gear ratios, compactness, and versatility, making them suitable for applications such as automotive transmissions, industrial machinery, and aerospace systems.
  • Industrial Machinery: Ring gears find extensive use in industrial machinery for power transmission, motion control, and speed regulation. They are employed in equipment such as gearboxes, speed reducers, hoists, conveyors, and rotary tables. Ring gears enable efficient torque transmission, precise motion control, and load distribution in these industrial applications.
  • Robotics and Automation: Ring gears are utilized in robotics and automation systems for precise motion control and synchronization. They can be found in robotic arms, automated assembly lines, CNC machines, and other robotic applications where accurate positioning and precise motion are critical. Ring gears provide the necessary torque transmission and gear reduction required for precise robotic movements.
  • Power Generation: Ring gears are used in power generation equipment, such as wind turbines and hydroelectric generators. They form part of the gearboxes that convert the rotational motion of the turbine or generator rotor into electrical energy. Ring gears in power generation applications need to handle high torque loads, operate reliably, and provide efficient power transmission.
  • Heavy Machinery and Construction Equipment: Ring gears are employed in heavy machinery and construction equipment, including excavators, cranes, mining equipment, and agricultural machinery. They facilitate the transmission of power and torque for various functions, such as lifting, digging, and material handling. Ring gears in these applications are designed to withstand high loads, rugged environments, and demanding operating conditions.

These are just a few examples of the applications of ring gears. Their versatility, load-carrying capacity, compact design, and ability to achieve high gear ratios make them suitable for a wide range of mechanical systems across industries.

The specific design, size, and material selection of ring gears may vary depending on the application requirements, operating conditions, and performance specifications.

China OEM Custom Casting Steel Large Module Ring Gear Rotary Kiln CZPT Ball Mill Girth Gear worm gear winchChina OEM Custom Casting Steel Large Module Ring Gear Rotary Kiln CZPT Ball Mill Girth Gear worm gear winch
editor by CX 2024-01-11