China Standard High Quality Differential CZPT Wheel and Pinion Gear CNC Machining Parts Spiral Bevel Gear for Truck Spare Parts with high quality

Product Description

High quality Differential CHINAMFG wheel and pinion gear CNC machining parts spiral bevel gear  for truck spare parts 

 

Process CNC machining,CNC milling, cnc lathe machining
Available Material 1.Stainless Steel: SS201, SS303, SS304, SS316, SS416, SS420,etc.
2.Steel: C45, 40Cr, 42CrMo, 20CrNiMo, 20CrMnTi, etc. (AISI 1045, 5140, 4140/4142, 8620 etc.)
3. Brass:C36000 ( C26800), C37700 ( HPb59), C38500( HPb58), C27200CuZn37), C28000(CuZn40),etc.
4.Bronze: C51000, C52100, C54400, etc.
5. Iron: 1213, 12L14,1215,etc.
6. Aluminum: Al6061, Al6063,Al2571,Al7075 etc
7. Carbon steel:AISI1006,AISI1571,AISI1571,etc.
8.Nylon PA66,MC901,POM plastic ects 
Hardness HRC50~55
Quality Control ISO9001 and ISO14001
Dimension bore tolerances -/+0.01mm
Quality standard AGMA, JIS, DIN 
Size/Color Gears and parts dimensions are according to drawings from customer, and colors are customized
Surface treatment black oxide,Zn-plated,ni-plated,tin-plated,chrome plated,passivated,sandblast and anodize,chromate,polish,electro painting,black anodize,plain,H.D.G,etc.
Dimensions Tolerance ±0.01mm or more precise
Samples confirmation and approval samples shipped for confirmation and shipping cost paid by customers
Package Inner clear plastic bag/outside carton/wooden pallets/ or any other special package as per customer’s requirements.

Manufacturing processes

Click here for more details!

Customization process
Support Customized Gears from Customers’ drawings and samples and Various non-standard customization

1.Products Discussions 
Customers send drawings oramples, and quote according to customers’ requirements.

2.Molds designing
Designing 3D drawings and optimizing the products.

3.Drawing confirmation
Sending the mold drawing tothe customers , and the customers CHINAMFG for confirmation.

4.Molds Construction
Manufacture molds accurately and accurately according to the drawings.

5.Moulds Inspection and Moulds Test
Detect various indicators of molds and optimization of inner cavities.

6.Sample Aprroval from Customer
Customers approve the samples and confirm them for bulk production.

7.Mass Production
Bulk production according to customers’s PO

8.PO Finished
Shipping to the customer andthe customers receive the gears.

If you need other customized requirements, please click here to contact us!
 

Related products

 

Why Choose Us

We enthusiastically provide sincere and prompt service to our customers and establish sustainable business relationship with them.

100% Factory inspection, we are responsible for any problems subjected to malfunction in warranty period.

We Can Provide You:

  • On-time Delivery with More Choice
  • Product Solutions and Service
  • Long Quality Guarantee
  • Local Technical Support
  • Fast Response to Customers’ Feedbacks in 24 hours

Also I would like to take this opportunity to give a brief introduction of our CHINAMFG company:

Our company is a famous manufacturer of agriculture gearbox,worm reduce gearbox, PTO shafts, Sprockets ,rollar chains, bevel gear, pulleys and racks in china.

We have exported many products to our customers all over the world, we have long-time experience and strong technology support.

You also can check our website to know for more details, if you need our products catalogue, please contact with us.

Company information

 

 

 

 

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: Cast Gear
Toothed Portion Shape: Bevel Wheel
Material: Cast Iron
Samples:
US$ 999/Piece
1 Piece(Min.Order)

|
Request Sample

differential gear

How do differential gears handle varying speeds in a vehicle’s wheels?

A differential gear system is designed to handle varying speeds in a vehicle’s wheels, allowing them to rotate at different rates while maintaining torque distribution. Here’s a detailed explanation of how differential gears achieve this:

1. Differential Assembly:

The differential assembly consists of several gears, including the ring and pinion gears, side gears, and spider gears. These components work together to accommodate varying speeds between the wheels.

2. Power Input:

The power is delivered to the differential gears through the driveshaft or transmission. The ring gear receives this power from the driveshaft, while the pinion gear is connected to the ring gear and transfers the rotational force to the differential assembly.

3. Speed Differences:

When a vehicle is moving in a straight line, the wheels ideally rotate at the same speed. However, during turns or when encountering different traction conditions, the wheels need to rotate at varying speeds. This is because the wheel on the outside of a turn covers a greater distance than the inside wheel, resulting in a speed differential.

4. Spider Gears:

The differential gears utilize spider gears, which are small gears located between the side gears. Spider gears allow the side gears to rotate independently of each other, accommodating the speed differences between the wheels.

5. Torque Distribution:

As the spider gears allow the side gears to rotate independently, torque is distributed between the wheels based on their speed differences. The wheel with less resistance or greater traction receives more torque, while the wheel with more resistance or lower traction receives less torque.

6. Smooth Cornering:

During turns, the inside wheel needs to rotate at a slower speed than the outside wheel. The differential gears allow this speed differentiation, enabling smooth cornering without wheel hop or tire scrubbing. By distributing torque appropriately, the differential gears ensure that both wheels receive sufficient power for optimal traction and control.

7. Limited-Slip and Locking Differentials:

In certain differential systems, such as limited-slip differentials or locking differentials, additional mechanisms are employed to further regulate speed differences and torque distribution. Limited-slip differentials use clutch packs or friction plates to provide a predetermined amount of resistance, allowing some differentiation between the wheels while still transferring power. Locking differentials lock the side gears together, ensuring equal torque distribution to both wheels, regardless of traction conditions.

8. Differential Types:

There are different types of differentials, including open differentials, limited-slip differentials, electronic differentials, torque vectoring differentials, and more. Each type utilizes specific technologies and mechanisms to handle varying speeds and torque distribution based on the vehicle’s requirements and driving conditions.

In summary, differential gears handle varying speeds in a vehicle’s wheels by utilizing a system of gears, including spider gears, side gears, ring and pinion gears. The speed differences between the wheels are accommodated by allowing independent rotation of the side gears through the spider gears. Torque distribution is adjusted to ensure optimal traction and control during turns and varying traction conditions. Additional mechanisms, such as limited-slip or locking differentials, can further regulate speed differences and torque distribution for enhanced performance and stability.

differential gear

Can differential gears be used in racing and high-performance vehicles?

Yes, differential gears are extensively used in racing and high-performance vehicles. Here’s a detailed explanation of their role and importance in racing and high-performance applications:

  • Traction Optimization: Differential gears play a crucial role in optimizing traction, which is vital for racing and high-performance vehicles. They distribute torque between the wheels, allowing power to be transferred to the wheels with the most grip. This helps maximize traction during acceleration, cornering, and exiting corners, enhancing overall performance and vehicle control.
  • Cornering Stability: Differential gears contribute to cornering stability in racing and high-performance vehicles. They enable the wheels to rotate at different speeds during turns, allowing the vehicle to negotiate corners more effectively. By allowing the outer wheel to rotate faster than the inner wheel, differential gears help reduce understeer or oversteer tendencies, promoting balanced and predictable handling characteristics.
  • Adjustable Performance: Differential gears offer the advantage of adjustability, allowing fine-tuning of performance characteristics to suit specific racing disciplines or driving preferences. By selecting different types of differential gears, such as limited-slip differentials or electronically controlled differentials, drivers and engineers can optimize torque distribution, responsiveness, and traction management for different tracks, weather conditions, or driving styles.
  • Improved Acceleration: Differential gears can enhance acceleration in racing and high-performance vehicles. By choosing appropriate gear ratios, drivers can optimize torque delivery to the wheels, maximizing acceleration capabilities. Shorter gear ratios provide more low-end torque, promoting quicker acceleration off the line, while taller gear ratios optimize top speed and high-end performance.
  • Enhanced Durability: Racing and high-performance differential gears are often designed and built to withstand the demanding conditions of intense competition. They are constructed using high-quality materials, advanced manufacturing techniques, and specialized coatings to ensure durability and reliability under extreme loads, heat, and stress. This helps maintain consistent performance and minimizes the risk of mechanical failures during races or high-performance driving.

In summary, differential gears are essential components in racing and high-performance vehicles. They optimize traction, contribute to cornering stability, offer adjustability, improve acceleration, and provide enhanced durability. Differential gears are carefully selected and fine-tuned to meet the specific requirements of racing disciplines, high-performance driving, and individual preferences, ultimately enhancing overall performance, control, and competitiveness in these applications.

differential gear

How do differential gears contribute to handling and stability in vehicles?

Differential gears play a significant role in enhancing the handling and stability of vehicles. Here’s a detailed explanation:

Differential gears contribute to handling and stability in vehicles in several ways:

1. Independent Wheel Rotation:

One of the primary contributions of differential gears is allowing the wheels to rotate independently. During turns, the outer wheel needs to travel a greater distance than the inner wheel. The differential gear enables this speed differentiation, ensuring that each wheel can rotate at a different speed while still receiving power from the engine. This independent wheel rotation enables smoother and more controlled handling during turns.

2. Balanced Power Distribution:

The differential gear distributes torque between the wheels, allowing them to receive power and propel the vehicle forward. By balancing the power distribution, the differential helps maintain stability during acceleration and deceleration. It ensures that both wheels receive an appropriate amount of power, preventing excessive wheel spin or traction loss, which can affect the vehicle’s stability.

3. Enhanced Traction:

Effective traction is crucial for handling and stability. Differential gears play a key role in optimizing traction. In situations where one wheel encounters reduced traction, such as on slippery surfaces or during cornering, the differential allows the wheel with better traction to receive more power. This torque distribution helps maximize the vehicle’s ability to maintain forward motion and improves overall stability by minimizing wheel slip.

4. Improved Steering Response:

The differential gear contributes to improved steering response, which is essential for handling and stability. By allowing the wheels to rotate independently, the differential enhances the vehicle’s ability to respond to steering inputs. It enables precise and controlled turning, allowing the driver to navigate corners and curves with better accuracy and confidence.

5. Balanced Weight Distribution:

Proper weight distribution is critical for optimal handling and stability. The differential gear helps maintain balanced weight distribution among the wheels. During turns, the weight of the vehicle shifts towards the outside wheels. The differential allows the outer wheel to rotate faster, accommodating this weight transfer and promoting stability. By ensuring balanced weight distribution, the differential contributes to predictable and controlled handling.

6. Prevention of Wheel Hop:

Wheel hop, which refers to the rapid up-and-down movement of the wheels during acceleration or on uneven surfaces, can negatively impact stability and handling. The differential gear helps prevent wheel hop by allowing the wheels to rotate at different speeds. This flexibility in wheel rotation reduces the likelihood of wheel hop, improving stability and maintaining better traction on the road.

In summary, differential gears contribute significantly to handling and stability in vehicles. They enable independent wheel rotation, balance power distribution, optimize traction, improve steering response, maintain balanced weight distribution, and prevent wheel hop. By facilitating smooth and controlled handling, the differential gear enhances the overall stability and performance of vehicles.

China Standard High Quality Differential CZPT Wheel and Pinion Gear CNC Machining Parts Spiral Bevel Gear for Truck Spare Parts with high qualityChina Standard High Quality Differential CZPT Wheel and Pinion Gear CNC Machining Parts Spiral Bevel Gear for Truck Spare Parts with high quality
editor by CX 2023-12-29