China OEM Factory Price Alloy Steel Large Helical Herringbone Gear worm gear winch

Product Description

Product Description

 

A herringbone gear is a specific type of double helical gear. Each helical groove of this gear looks like the letter V, and many together form a herringbone pattern.

 

Kingrail Parts can produce all kinds of herringbone gear for mining machinery, mills, kilns and other equipment.

 

Specifications:

Material

Carbon steel,Alloy steel

Structure

Forging,casting

Type of gear

Herringbone gear

Heat treatment

Quenching and tempering

Process 

Forging, rough machining, QT, finish machining

Main equipments

Hobbing,CNC machine

Module

Up to 200

Precision of gear

Grinding ISO Grade 5-7 & Hobbing ISO Grade 8-9

Inspection

Raw material inspection, UT,physical property test,dimension inspect

 

Kingrail Parts can customize herringbone gear according to customer’s specifications and requirements

 

Manufacturing process:
Rraw matrial — Forging testing– Turning — Drilling — Heat Treatment — Milling– Grinding — Shaping and hobbing Process — Packing — Shipping

 

After Sales Service

 

1. OEM and customized service.
2. Full machining, primer coating, surface treatment.
3. Complete material testing process.
4. Quality control

Contact us

 

If you have any questions, pls feel free to contact us
 

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

herringbone gear

How do you install a herringbone gear system?

Installing a herringbone gear system requires careful attention to ensure proper alignment, engagement, and functionality. Here’s a detailed explanation of the steps involved in installing a herringbone gear system:

  1. Preparation: Before installation, gather all the necessary components, including the herringbone gears, shafts, bearings, and any associated hardware. Ensure that the gears and shafts are clean and free from any debris or contaminants that could affect their performance. Review the gear system’s specifications, including the gear ratios, torque requirements, and any specific installation guidelines provided by the manufacturer.
  2. Shaft Alignment: Proper shaft alignment is crucial for the smooth operation of a herringbone gear system. Align the shafts accurately to ensure that they are parallel and concentric with each other. This can be achieved using alignment tools such as dial indicators and laser alignment systems. Proper shaft alignment helps to minimize misalignment-related issues such as gear tooth wear, noise, and premature failure.
  3. Gear Engagement: Position the herringbone gears on their respective shafts, ensuring that they are correctly oriented and meshing properly. The double helical tooth profile of the herringbone gears requires careful engagement to prevent interference and ensure smooth operation. Pay attention to the gear backlash, which is the slight clearance between the gear teeth when they are not under load. Follow the manufacturer’s recommendations for the appropriate gear backlash and adjust as necessary.
  4. Bearing Installation: Install the appropriate bearings to support the gear shafts. Ensure that the bearings are aligned and properly seated in their housings. Use the specified lubrication method and apply the appropriate lubricant to the bearings to minimize friction and wear. Adequate lubrication is essential for the smooth operation and longevity of the gear system.
  5. Check Clearances: Once the gears, shafts, and bearings are installed, check for any interferences or clearances issues. Verify that there is sufficient clearance between the gear teeth, as well as between the gears and any adjacent components or structures. Ensure that there are no obstructions that could impede the rotational movement of the gears or cause damage during operation.
  6. Tightening and Fastening: Securely tighten all fasteners, such as bolts or set screws, to hold the gears, shafts, and bearings in place. Follow the recommended torque specifications provided by the manufacturer to ensure proper fastening without over-tightening, which could lead to excessive stress or deformation of the components.
  7. Testing and Adjustment: After installation, perform a thorough inspection and functional testing of the herringbone gear system. Rotate the shafts manually or using a suitable drive mechanism to check for smooth and proper gear engagement. Listen for any unusual noises, vibrations, or irregularities that could indicate misalignment or other issues. If necessary, make fine adjustments to the gear engagement, backlash, or shaft alignment to optimize the performance of the gear system.

It is important to note that the installation process may vary depending on the specific gear system design, size, and application requirements. Always refer to the manufacturer’s guidelines, technical documentation, and any applicable industry standards when installing a herringbone gear system to ensure proper installation and optimal performance.

herringbone gear

How do you prevent backlash and gear play in a herringbone gear mechanism?

Preventing backlash and gear play is crucial in a herringbone gear mechanism to ensure accurate and efficient power transmission. Here’s a detailed explanation of methods to prevent backlash and gear play in a herringbone gear mechanism:

  • Precision Manufacturing: Backlash and gear play can be minimized by ensuring precise manufacturing of the herringbone gears. This involves maintaining tight tolerances during gear machining, tooth profiling, and gear assembly. High-quality manufacturing processes help achieve proper gear tooth engagement and minimize any gaps that can lead to backlash.
  • Proper Gear Alignment: Accurate alignment of the herringbone gears is essential to reduce backlash. Misalignment can result in uneven load distribution and improper gear meshing, leading to increased gear play. Proper alignment should be ensured during the initial installation and periodically checked during maintenance to maintain optimal gear performance.
  • Optimal Tooth Contact: Maximizing tooth contact between the herringbone gears can help reduce backlash. This can be achieved by adjusting the gear position, gear meshing depth, and gear tooth profile. By optimizing tooth contact, the gears are more tightly engaged, minimizing any free play or backlash between the gear teeth.
  • Preload or Gear Meshing Pre-Tensioning: Applying a small amount of preload or pre-tensioning in the herringbone gear mechanism can help minimize backlash. This can be achieved by using spring-loaded components, such as thrust bearings or Belleville washers, to exert a slight force on the gears, ensuring continuous contact and reducing any play between the gear teeth.
  • Appropriate Lubrication: Proper lubrication of the herringbone gears is essential to reduce friction, wear, and backlash. Using the right type and amount of lubricant helps maintain smooth gear operation, ensuring optimal gear meshing and minimizing gear play. Regular lubrication maintenance is necessary to prevent excessive wear and maintain proper lubrication film thickness.
  • Stiff Gearbox Design: A stiff and rigid gearbox design can help minimize gear play and backlash. By reducing any flexing or deflection within the gearbox components, the herringbone gears can maintain their proper alignment and engagement, reducing the potential for backlash. Robust housing structures, rigid shafts, and appropriate bearing support contribute to a stiff gearbox design.
  • Periodic Maintenance and Inspection: Regular maintenance and inspection procedures are crucial for identifying and addressing any potential issues that can lead to backlash or gear play in a herringbone gear mechanism. This includes checking gear alignment, lubrication condition, gear tooth wear, and any signs of damage or misalignment. Any detected problems should be promptly resolved to maintain optimal gear performance.

Implementing these prevention methods can help minimize backlash and gear play, ensuring accurate and efficient power transmission in a herringbone gear mechanism. It is important to consider the specific operating conditions, load requirements, and system design factors when applying these methods to achieve the best performance from herringbone gears.

herringbone gear

What is a herringbone gear and how does it work?

A herringbone gear, also known as a double helical gear, is a specialized type of gear with a unique tooth design. Here’s a detailed explanation of what a herringbone gear is and how it works:

A herringbone gear consists of two helical gear sections that are mirror images of each other and are joined together to form a V-shaped or herringbone-shaped tooth profile. Unlike conventional helical gears, which have a single helix angle and a continuous spiral tooth profile, herringbone gears have two opposing helix angles, resulting in a “V” shape when viewed from the end.

The primary advantage of the herringbone gear design is its ability to eliminate axial thrust or end thrust forces that are generated in helical gears. In a conventional helical gear, the helix angle of the teeth causes an axial force along the gear’s axis during rotation. This axial force can create significant thrust loads that need to be counteracted using thrust bearings or other mechanisms.

By using the double helix design of herringbone gears, the opposing helix angles cancel out the axial forces generated by each helical section. This cancellation of axial forces eliminates the need for thrust bearings and allows herringbone gears to transmit torque smoothly without axial movement or thrust loads.

When a herringbone gear is in operation, the angled teeth of the two helical sections engage with each other, similar to how helical gears mesh. The contact between the teeth occurs gradually, starting from one end of the gear and progressing towards the other end. The overlapping or interlocking tooth profiles ensure a continuous and smooth transfer of power.

The herringbone gear design offers several advantages:

  • Axial Load Balancing: The opposing helix angles in herringbone gears balance out the axial forces, eliminating the need for thrust bearings and reducing wear on the gear teeth.
  • Increased Load Capacity: The V-shaped tooth profile of herringbone gears provides increased tooth contact area compared to a single helix gear. This leads to improved load distribution and higher load-carrying capacity.
  • Reduced Vibration and Noise: The double helix design of herringbone gears helps cancel out vibrations and reduce noise during operation. The opposing helix angles minimize tooth deflection and ensure smoother engagement between the gear teeth.
  • Bidirectional Power Transmission: Herringbone gears can transmit power in both directions due to their symmetrical tooth profiles. This makes them suitable for applications where reversing or bidirectional power transmission is required.
  • High Efficiency: The continuous and gradual engagement of the herringbone gear teeth results in improved efficiency by reducing sliding friction and minimizing backlash.

Herringbone gears are commonly used in various industrial applications, including power transmission systems, heavy machinery, oil and gas equipment, marine propulsion systems, and high-speed gearboxes. Their unique design and benefits make them well-suited for applications that require high torque transmission, smooth operation, and minimal axial thrust.

China OEM Factory Price Alloy Steel Large Helical Herringbone Gear worm gear winchChina OEM Factory Price Alloy Steel Large Helical Herringbone Gear worm gear winch
editor by CX 2023-12-06