China manufacturer 33-0411-01 Gear Bite Rotation Turntable Bearing Wind Turbine Slewing Bearings Slew Ring No Gear for Sale gear box

Product Description

Product series

1. Single Row Four Point Contact Ball Slewing Bearings.
2. Single Row Crossed Roller Slewing Bearings
3. Double Row Ball Slewing Bearings
4. Three Row Roller Slewing Bearings
5. Thin Section Slewing bearings (Light type).
6. Thin Section Slewing Bearings (Flange type)

Outside Diameter

300 – 5000 mm

Gear Options

External gear
Internal gear
Without gear

Brand Name

FH

Raw material

50Mn, 42CrMo

Certificate

ISO9001:2008, SGS

Payment Terms

L/C,T/T,Western Union

OEM/ODM

Available

Packaging Details

1:Filling with rust-proof oil
2:Packing with protective layers
3:Fixed in wooden box

Fenghe provides 2D and drawing downloads of slewing ring bearings. Contact the pre-sales engineer team.
Search Fenghe’s slewing bearing catalog by slewing bearing type, gear position, outer and inner diameter, thickness, static load and other parameters, please contact us.

FH Slewing bearing provide different kinds of surface treatment: Such as Zinc coating, Sand blast, Painting, oil protecting,  barffing etc, which will guarantee the slewing bearing with long durability.

We provide internal gear, external gear, helical gear, no gear slewing bearing, provide the different solution for complete project.

FH Slewing bearing provide vast range for application of slewing bearing,rolling element like china,Ceramic,brass cage, steel cage and nylon cage and grease for high temperature.

FH has 5 workshops: ring forging workshop, large slewing bearing workshop, small slewing bearing workshop, slew drive workshop, assembly workshop, and finished product warehouse workshop. From rough forgings to finished products, we support one-stop service, quality control and inspection throughout the full processing.

In order to save you a lot of time and effort, the FengHe team created the 3D model as well as the drawings of the slewing bearings and manufacturing parts that we provided. All you need to do is put the slewing ring into your design and it will work normally. If you cannot find the right part online, we will customize slewing bearings to your exact specifications.

Are you ready to get more revenue from bearing and gear suppliers? Contact us immediately. Discover the benefits of working with a team of highly skilled people who provide high quality bearings and custom gears.

Patient work makes a skilled craftsman, make demands to meet.

Fast delivery to ensure your urgent project, EMS, UPS, FedEx, TNT, DHL,by sea, by air & by train etc.

FAQ:
Do you have any questions about our slewing bearing? Maybe you can find the answer below. If the answer below does not solve your problem, please contact us and our engineer will answer it for you.

1. Where is your slewing bearing manufactured?
Our slewing bearing are all manufactured in China. We not only have the ability to design and produce slewing bearing, but the quality can also be guaranteed. At the same time our slewing bearing price is more favorable.

2. I don’t know which slewing bearing to use, can you choose for me?
Yes, of course, Each model has a parameter list on the website. You can choose the suitable slewing bearing according to these parameter lists. If you don’t know how to choose, you can get in touch with us and our engineers will work with you to choose the suitable product. We can also design a new slewing bearing solution for you according to your equipment.

3. Can I get your product catalog?
You can get our product catalog in the download or contact us, we will send the product catalog to you by email or other ways.

4. Can you customize products?
Yes we can. Our engineers have very rich experience in slewing bearing design. On the customized slewing bearing page, you can see some special customized products designed by our engineers. These design solutions meet the special needs of many customers. Our engineers can also work with you to design a new slewing bearing.

5. Can you provide accessories?
Yes, we can provide matching spare parts such as motors, hydraulic motors, encoders that are compatible with slewing bearing.

6. Can you provide a 3D model?
Yes. All our slewing bearing have 3D models, you can contact us to get them. At the same time, we can also provide CAD files and PDF files.

7. How long is your slewing bearing warranty period?
Our slewing bearing warranty time is 12 months. When you install, use and store the slewing bearing, please refer to the slewing bearing instruction manual.

8. Can you choose the color of your slewing bearing?
Yes. Our slewing bearing is available in many colors. If you have special requirements, please tell our sales engineers, we are happy to provide services for you.

 

After-sales Service: 1year
Warranty: 1year
Service: OEM Customized Services
Samples:
US$ 400/Set
1 Set(Min.Order)

|

Order Sample

Rugged durable performance
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

ring gear

How do you choose the right size ring gear for your application?

Choosing the right size ring gear for a specific application involves considering several factors related to the gear system, load requirements, space constraints, and performance objectives. Here’s a detailed explanation of the process involved in selecting the appropriate size ring gear:

  1. Determine the Gear System Parameters: Understand the specific requirements of the gear system in which the ring gear will be used. This includes identifying the input power, desired output speed, torque requirements, and operating conditions such as temperature, vibration, and lubrication.
  2. Calculate Gear Ratios: Determine the required gear ratios for the gear system. Gear ratios define the relationship between the rotational speeds and torques of the driving and driven gears. By knowing the desired gear ratios, you can calculate the appropriate size of the ring gear relative to the other gears in the system.
  3. Evaluate Load Capacity: Assess the load capacity needed for the application. Consider the maximum torque and radial loads that the ring gear will experience during operation. It’s crucial to select a ring gear that can handle the anticipated loads without excessive wear, deformation, or failure.
  4. Consider Space Limitations: Determine the available space for the ring gear within the application. Consider the overall dimensions, such as the outer diameter, inner diameter, and thickness of the ring gear. Ensure that the selected size fits within the designated space without interfering with other components or compromising the overall functionality of the system.
  5. Account for Manufacturing Considerations: Consider the manufacturability of the ring gear. Evaluate factors such as the feasibility of producing the required tooth profile, the availability of suitable materials, and the manufacturing capabilities of the supplier. It’s important to choose a size that can be efficiently manufactured while meeting the required quality standards.
  6. Consult Design Guidelines and Standards: Refer to industry design guidelines, standards, and specifications specific to the type of gear and application. These guidelines provide recommendations and formulas for calculating gear sizes based on factors such as tooth strength, contact stress, and bending stress. Adhering to recognized standards ensures that the selected ring gear size is appropriate for the intended application.

It is often beneficial to consult with gear design engineers or industry experts to ensure the proper selection of the ring gear size. They can provide detailed analysis, simulation, and expertise in choosing the optimal size based on the specific requirements and constraints of the application.

By carefully considering these factors and following established design practices, you can choose the right size ring gear that will deliver reliable performance, efficient power transmission, and long-term durability for your application.

\ring gear

How do you prevent backlash and gear play in a ring gear mechanism?

Preventing backlash and gear play in a ring gear mechanism is crucial for ensuring accurate and precise operation. Here’s a detailed explanation of how to prevent backlash and gear play in a ring gear mechanism:

  • Precise Gear Design: The design of the ring gear and associated gears should be carefully engineered to minimize backlash. This involves selecting appropriate tooth profiles and gear geometry that promote proper meshing and minimize clearance between the gear teeth. The gear design should consider factors such as tooth thickness, pressure angle, and tooth contact ratio to achieve optimal gear meshing without excessive play.
  • Tight Manufacturing Tolerances: Close manufacturing tolerances are essential to reduce backlash in a ring gear mechanism. The gear components, including the ring gear and mating gears, should be produced with high precision to ensure accurate tooth dimensions and minimize any gaps or play between the gear teeth. Tight manufacturing tolerances help achieve a tighter meshing fit, reducing backlash and gear play.
  • Proper Gear Alignment: Accurate alignment of the ring gear and mating gears is crucial for minimizing backlash. The gears should be properly aligned along their axes to ensure precise engagement and minimize any misalignment that can contribute to play. Adequate alignment can be achieved through careful assembly techniques, such as using alignment fixtures, proper shimming, and precision measurement tools.
  • Preload or Pre-tension: Applying preload or pre-tension to the ring gear mechanism can help reduce backlash and gear play. Preload involves applying a slight compressive force or tension to eliminate any clearance or gaps between the gear teeth during operation. This can be achieved through various methods, such as using spring-loaded components, adjustable shims, or axial preloading devices.
  • Optimized Lubrication: Proper lubrication is essential for reducing friction and minimizing gear play. Lubricants with appropriate viscosity and film strength should be used to ensure smooth gear operation and reduce any unwanted movement or play between the gear teeth. Regular lubricant maintenance, such as monitoring oil levels and replenishing or replacing lubricants as needed, helps maintain optimal lubrication conditions and minimize backlash.
  • Mechanical Backlash Compensation: In some applications, mechanical compensation mechanisms can be employed to actively compensate for any residual backlash. These mechanisms can include systems with adjustable clearances, anti-backlash devices, or dual-gear arrangements that counteract the effects of backlash. Mechanical backlash compensation techniques can help maintain precise positioning and eliminate any undesired play in the gear mechanism.

By implementing these measures, it is possible to significantly reduce or eliminate backlash and gear play in a ring gear mechanism. Careful gear design, tight manufacturing tolerances, proper alignment, preload or pre-tension, optimized lubrication, and mechanical compensation techniques all play a role in ensuring accurate and precise operation of the ring gear mechanism.

ring gear

What is a ring gear and how does it work?

A ring gear is a type of gear that features teeth on the outer perimeter of a circular ring-shaped component. It is commonly used in various mechanical systems and applications. Here’s a detailed explanation of what a ring gear is and how it works:

A ring gear, also known as an annular gear or internal gear, is a gear with teeth on the inside circumference of a circular ring. It is designed to mesh with a pinion gear or another gear that has teeth on the outside. The combination of a ring gear and a pinion gear forms a gear set, enabling the transmission of rotational motion and torque between the two gears.

Here’s how a ring gear works:

  1. Tooth Engagement: When a ring gear and a pinion gear are brought together, the teeth of the pinion gear mesh with the teeth of the ring gear. The teeth of the pinion gear enter the spaces between the teeth of the ring gear, creating a mechanical connection between the two gears.
  2. Motion Transmission: As the driving gear (such as the pinion gear) rotates, it transfers rotational motion to the ring gear. The teeth of the driving gear push against the teeth of the ring gear, causing the ring gear to rotate in the opposite direction. This rotational motion can be used to drive other components or systems connected to the ring gear.
  3. Torque Transfer: The meshing of the teeth between the ring gear and the driving gear allows for the transfer of torque. Torque is the rotational force or twisting force applied to a gear. As the driving gear exerts torque on the ring gear through the meshing teeth, the ring gear experiences a torque load. This torque load can be transmitted to other components or systems connected to the ring gear.
  4. Gear Ratio: The gear ratio between the ring gear and the driving gear determines the speed and torque relationship between the two gears. The gear ratio is defined as the ratio of the number of teeth on the ring gear to the number of teeth on the driving gear. By changing the size or number of teeth on either the ring gear or the driving gear, the gear ratio can be adjusted to achieve the desired speed or torque output.
  5. Load Distribution: The ring gear distributes the load over a larger area compared to other types of gears. This load distribution characteristic allows the ring gear to handle higher loads and torque. The design of the ring gear and its tooth profile ensures that the load is evenly distributed across the surface of the gear, enhancing its durability and reducing the risk of premature wear or failure.

Ring gears are commonly used in various applications, including automotive transmissions, differential systems, planetary gear systems, industrial machinery, and power transmission equipment. They provide advantages such as compactness, high torque capacity, load distribution, and the ability to achieve high gear ratios.

It’s important to note that the design and characteristics of ring gears may vary depending on the specific application and requirements. Factors such as tooth profile, material selection, lubrication, and manufacturing techniques are carefully considered to ensure optimal performance and durability of the ring gear.

China manufacturer 33-0411-01 Gear Bite Rotation Turntable Bearing Wind Turbine Slewing Bearings Slew Ring No Gear for Sale gear boxChina manufacturer 33-0411-01 Gear Bite Rotation Turntable Bearing Wind Turbine Slewing Bearings Slew Ring No Gear for Sale gear box
editor by CX 2023-12-06