China manufacturer China Supplier OEM CNC Machining Brass Stainless Steel Aluminum Small Gear Parts Spur Brass Gear hypoid bevel gear

Product Description

 

Product Description

 

Name: China Supplier OEM CNC Machining Brass Stainless Steel Aluminum Small Gear Parts Spur Brass Gear
Material: stainless steel, carbon steel, alloy steel and so on.
Designs: 1. As per customer’s drawing
2. As per customer’s samples
Surface Treatment: 1. Polish
2. Sand blasting
Service:   OEM service available
Products: All kinds of stainless steel casting: include pipe fitting, valve part,
automotive parts,railroad parts, agriculture parts, marine parts, lighting
parts,pump body, architectural parts and furniture parts so on.
Advantages: Experienced to machine casting parts 
Near to HangZhou port
3. We provide: OEM stainless steel lost wax castings
 and OEM machining services for stainless steel lost wax castings.
 We have: CNC Machining, CNC turning, CNC Milling,
 3D CMM Inspection and CNC Optical Inspection. 

 

Detailed Photos

 

Company Profile

HangZhou Lucky Stone Import & Export Co., Ltd. specialize in CNC machining, investment casting, die casting, gravity casting, forging and stamping. We produce complex parts and aviation assemblies, and coordinate all steps required while providing the best quality and shortest possible lead time.

Based on our advanced equipment, more than 10 years experience and QC system, we have powerful ability to develop new items according to our customer’s drawings or samples.

We exert strict quality control in production processes, and our products comply with the requirements of oil, mine, defense, power generation and other industries. Our expertise lies in complex parts machining of carbon steel, alloy steel, stainless steel, aluminum and all kinds of metal. Moreover, we offer full tested subassemblies and assemblies as well as supply chain consolidation with complete traceability from raw materials to finished goods.

Certificated quality control system and high efficient organization, as well as high attention from the whole company, have steadily improved products quality and reduced producing costs in recent years.

OEM or ODM products are welcome. We will be your best choice, and we expect to be successful together with you !
 

Our Service

Product/Mold Design:

ODM/OEM products are highly welcome, and we have many years export experience in US and Europe market.
All kinds of drawings are available, such as dwg, pdf, jpg, stp, igs and etc.

Molds Making:

In order to ensure lead time and quality, all the molds will be made in our CNC machining workshop.

CNC Machining Workshop:

We have many sets of CNC Machining Center and CNC lathes, and could ensure 0.01-0.02mm tolerance depending on products design, size and raw material.

Heat Treatment:

Some castings need to be heat treated to get better and stable structure.

Manual Casting by Experienced Workers:

Our workers are full of experience and operate every process very carefully.

FAQ

1. Are you a manufacturer or a trading company?

We are a professional manufacturer with over 10 years’ experience for designing and producing casting parts and machining parts.

2. How can I get some samples? 
If you need, we are glad to offer you samples for free, but the new clients are expected to pay the mould coast and courier cost.
 
3. Can you make casting according to our drawing?

Yes, we can make casting according to your drawing, 2D drawing, or 3D cad model, both available. If the 3D cad model can be supplied, the development of the tooling can be more efficient. But if without 3D, based on 2D drawing we can still make the samples properly approved.
 
4. Can you make casting based on our samples?
Yes, we can make measurement based on your samples to make drawings for tooling making.
 
5. What’s your quality control device in house?

We have spectrometer in house to monitor the chemical property, tensile test machine to control the mechanical property and UT Sonic as NDT checking method to control the casting detect under the surface of cast.

For more information, please feel free to contact us! 
     
        

Casting Method: Thermal Gravity Casting
Process: Lost Wax Casting
Molding Technics: Pressure Casting
Application: Hardware
Material: Stainless Steel
Surface Preparation: Polishing
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

spur gear

Can spur gears be used in heavy-duty machinery and equipment?

Yes, spur gears can be used in heavy-duty machinery and equipment. Here’s a detailed explanation:

Spur gears are versatile and commonly used in a wide range of applications, including heavy-duty machinery and equipment. They are known for their simplicity, efficiency, and ability to transmit high loads and torque. Spur gears have straight teeth that are parallel to the gear axis, allowing for effective power transmission between parallel shafts.

Advantages of Spur Gears in Heavy-Duty Applications:

Spur gears offer several advantages that make them suitable for heavy-duty machinery and equipment:

  • High Load Capacity: Spur gears are capable of handling high loads due to their robust tooth design and larger contact area compared to other gear types. They distribute the load evenly across the gear teeth, minimizing stress concentration and ensuring reliable operation in heavy-duty applications.
  • Efficient Power Transmission: Spur gears have high gear meshing efficiency, typically above 95%. This means that a large percentage of the input power is effectively transmitted to the output, making them suitable for heavy-duty machinery where power transfer is critical.
  • Wide Range of Sizes and Ratios: Spur gears are available in a wide range of sizes, tooth counts, and gear ratios. This versatility allows for customization and adaptation to the specific requirements of heavy-duty machinery and equipment.
  • Cost-Effective: Spur gears are relatively simple in design and easier to manufacture compared to some other gear types. This simplicity often translates into cost-effectiveness, making them an attractive choice for heavy-duty applications where cost considerations are important.
  • Easy Maintenance: Spur gears are generally easier to maintain compared to gears with complex tooth profiles or specialized designs. Routine maintenance tasks such as lubrication, inspection, and replacement of worn gears can be carried out more straightforwardly, minimizing downtime and maintenance costs.

Considerations for Heavy-Duty Applications:

While spur gears can be used in heavy-duty machinery and equipment, certain considerations should be taken into account:

  • Load Distribution: Proper load distribution is critical to ensure the longevity and reliability of spur gears in heavy-duty applications. It is important to design the gear system in a way that distributes the loads evenly across the gear teeth, minimizing the risk of tooth breakage or premature wear.
  • Material Selection: The selection of gear materials is crucial in heavy-duty applications. The gear material should have the necessary strength, hardness, and fatigue resistance to withstand the anticipated loads and operating conditions. Common materials used for heavy-duty spur gears include alloy steels, case-hardened steels, and specialized gear materials such as carburized or nitrided steels.
  • Lubrication and Cooling: Adequate lubrication is essential to minimize friction, wear, and heat generation in heavy-duty spur gears. Proper lubrication techniques and the use of high-quality lubricants can significantly extend the gear’s service life. In some cases, additional cooling measures such as circulating oil systems or forced-air cooling may be necessary to manage heat buildup in heavy-duty applications.
  • Mechanical Considerations: The overall mechanical design of the heavy-duty machinery should account for gear alignment, shaft deflection, and other factors that can affect gear performance. Robust support structures, accurate alignment, and consideration of potential misalignments due to operational conditions should be taken into account during the design phase.

By addressing these considerations and implementing proper design, material selection, lubrication, and maintenance practices, spur gears can effectively withstand the demands of heavy-duty machinery and equipment.

It’s important to note that the specific application requirements, operating conditions, and load characteristics may vary. Consulting with gear manufacturers, engineers, or industry experts can provide further guidance on the suitability and design considerations when using spur gears in heavy-duty applications.

spur gear

Are spur gears suitable for high-torque applications?

Spur gears are commonly used in a wide range of applications, including those involving high-torque requirements. However, their suitability for high-torque applications depends on various factors. Here’s a detailed explanation:

Spur gears are designed to transmit power and torque between parallel shafts. They have straight teeth that engage fully, providing efficient power transfer. The suitability of spur gears for high-torque applications can be evaluated based on the following considerations:

  • Load Distribution: Spur gears distribute the transmitted load over a larger contact area compared to other gear types. This characteristic allows them to handle higher torque loads effectively.
  • Size and Diameter: The size and diameter of the spur gears play a crucial role in their ability to handle high torque. Larger gear diameters provide increased torque capacity due to the longer lever arm and larger contact area between the gear teeth.
  • Material Selection: Choosing the appropriate material for the spur gears is essential for high-torque applications. Strong and durable materials, such as hardened steel or alloy steels, are commonly used to ensure the gears can withstand the high stresses and torque loads without deformation or failure.
  • Gear Design: Proper gear design considerations, such as tooth profile, module or pitch, and the number of teeth, can impact the torque-carrying capacity of spur gears. Design parameters should be optimized to ensure sufficient tooth strength and minimize the risk of tooth breakage or excessive wear.
  • Lubrication and Maintenance: Adequate lubrication is critical for reducing friction, wear, and heat generation in high-torque spur gear applications. Regular maintenance, including lubricant replacement and gear inspections, can help identify and address any issues that may affect the gear’s torque-handling capabilities.
  • Supporting Components: The overall system design, including the selection of bearings, shafts, and housing, should be considered to ensure proper support and alignment of the spur gears. Well-designed supporting components contribute to the overall torque capacity of the system.

While spur gears can handle high torque, it’s important to note that there are limitations to their torque capacity. Factors such as gear size, material strength, tooth design, and operating conditions can affect the maximum torque the gears can safely transmit without failure.

In some cases, other gear types such as helical gears or bevel gears may be more suitable for specific high-torque applications. These gears offer advantages such as increased load-carrying capacity, improved torque transfer efficiency, and reduced noise and vibration levels.

Ultimately, the suitability of spur gears for high-torque applications should be evaluated based on the specific requirements, operating conditions, and industry standards applicable to the particular application.

spur gear

How do you choose the right size spur gear for your application?

Choosing the right size spur gear for your application requires careful consideration of various factors. Here’s a detailed explanation of the steps involved in selecting the appropriate size spur gear:

  1. Determine the Required Torque: Start by determining the torque requirements of your application. Calculate or estimate the maximum torque that the gear will need to transmit. Consider factors such as the power input, speed, and load conditions to determine the required torque.
  2. Identify the Speed Requirements: Determine the desired rotational speed or RPM (revolutions per minute) for your application. This will help in selecting a gear with the appropriate pitch diameter and tooth configuration to achieve the desired speed.
  3. Consider the Load Conditions: Evaluate the expected load conditions, including the magnitude and direction of the load. Determine if the load is constant or variable, and if it involves shock loads or cyclic loading. This will impact the gear’s durability and load-carrying capacity.
  4. Calculate the Pitch Diameter: Based on the torque and speed requirements, calculate the pitch diameter of the spur gear. The pitch diameter is determined by the formula: Pitch Diameter = (2 x Torque) / (Pressure Angle x Allowable Tooth Shear Stress).
  5. Select the Module Size: Choose an appropriate module size based on the gear size and application requirements. The module size determines the tooth size and spacing. Smaller module sizes are used for fine tooth profiles and higher precision, while larger module sizes are suitable for heavier loads and higher torque applications.
  6. Determine the Number of Teeth: Based on the pitch diameter and module size, calculate the number of teeth required for the gear. Ensure that the gear has an adequate number of teeth for smooth operation, load distribution, and sufficient contact ratio.
  7. Consider Space Constraints: Evaluate the available space and mounting requirements in your application. Ensure that the selected gear size can fit within the available space and can be properly mounted on the shaft or gearbox.
  8. Choose the Material: Consider the operating conditions, such as temperature, humidity, and presence of corrosive substances, to select the appropriate material for the spur gear. Common materials include steel, cast iron, brass, and plastic. Choose a material that offers the necessary strength, wear resistance, and durability for your specific application.
  9. Consider Additional Design Features: Depending on your application requirements, you may need to consider additional design features such as profile shift, hub configuration, and surface treatments. Profile shift can optimize gear performance, while specific hub configurations and surface treatments may be necessary for proper mounting and enhanced durability.

It’s important to note that gear selection is a complex process, and it may require consultation with gear manufacturers or experts in the field. They can provide guidance based on their expertise and assist in selecting the most suitable spur gear for your specific application.

By thoroughly considering factors such as torque requirements, speed, load conditions, pitch diameter, module size, number of teeth, space constraints, material selection, and additional design features, you can choose the right size spur gear that meets the demands of your application in terms of performance, durability, and efficiency.

China manufacturer China Supplier OEM CNC Machining Brass Stainless Steel Aluminum Small Gear Parts Spur Brass Gear hypoid bevel gearChina manufacturer China Supplier OEM CNC Machining Brass Stainless Steel Aluminum Small Gear Parts Spur Brass Gear hypoid bevel gear
editor by CX 2023-11-07